

Welcome to MMHuman3D’s documentation!

Get Started

	Installation
	Requirements

	Prepare environment

	Install MMHuman3D

	A from-scratch setup script

	Getting Started
	Installation

	Data Preparation

	Body Model Preparation

	Inference / Demo

	Evaluation

	Training

	More Tutorials

	Benchmark and Model Zoo
	Baselines

Datasets

	HumanData
	Overview

	Key/Value definition

	Data compression

	Data selection

	To torch.Tensor

	MultiHumanData

	Data preparation
	Overview

	Datasets for supported algorithms

	Folder structure

Keypoints convention

	Keypoints convention
	Overview

	How to use

	Supported Conventions

	Customize keypoints convention
	Overview

Visualization

	Cameras
	Camera Initialization

	Camera Projection Matrixs

	Camera Conventions

	Some Conversion Functions

	Some Compute Functions

	Visualize Keypoints
	Visualize 2d keypoints

	Visualize 3d keypoints

	About ffmpeg_utils

	Visualize SMPL Mesh
	Different render_choice:

	Important parameters:

License

	Additional Licenses
	SMPLify-X

	VIBE

	SPIN

	PARE

	STAR

API Reference

	mmhuman3d.apis

	mmhuman3d.core

	mmhuman3d.models

	mmhuman3d.data

	mmhuman3d.utils

Indices and tables

	Index

	Search Page

Installation

	Requirements

	Prepare environment

	Install MMHuman3D

	A from-scratch setup script

Requirements

	Linux

	ffmpeg

	Python 3.7+

	PyTorch 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.8.1, 1.9.0 or 1.9.1.

	CUDA 9.2+

	GCC 5+

	PyTorch3D 0.4+

	MMCV [https://github.com/open-mmlab/mmcv] (Please install mmcv-full>=1.3.17,<1.6.0 for GPU)

Optional:

	MMPOSE [https://github.com/open-mmlab/mmpose] (Only for demo.)

	MMDETECTION [https://github.com/open-mmlab/mmdetection] (Only for demo.)

	MMTRACKING [https://github.com/open-mmlab/mmtracking] (Only for multi-person demo. If you use mmtrack, please install mmcls<0.23.1, mmcv-full>=1.3.17,<1.6.0 for GPU.)

Prepare environment

a. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab

b. Install ffmpeg

Install ffmpeg with conda directly and the libx264 will be built automatically.

conda install ffmpeg

c. Install PyTorch and torchvision following the official instructions [https://pytorch.org/].

conda install pytorch={torch_version} torchvision cudatoolkit={cu_version} -c pytorch

E.g., install PyTorch 1.8.0 & CUDA 10.2.

conda install pytorch=1.8.0 torchvision cudatoolkit=10.2 -c pytorch

Important: Make sure that your compilation CUDA version and runtime CUDA version match.
Besides, for RTX 30 series GPU, cudatoolkit>=11.0 is required.

d. Install PyTorch3D from source.

For Linux:

conda install -c fvcore -c iopath -c conda-forge fvcore iopath -y
conda install -c bottler nvidiacub -y

conda install pytorch3d -c pytorch3d

Users may also refer to PyTorch3D-install [https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md] for more details.
However, our recent tests show that installing using conda sometimes runs into dependency conflicts.
Hence, users may alternatively install Pytorch3D from source following the steps below.

git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d
pip install .
cd ..

For Windows:

Please refer to official installation [https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md] for details. Here we provide an example [https://github.com/open-mmlab/mmhuman3d/pull/199#issue-1274739041] for user reference.
Important: This section is for users who want to install MMHuman3D on Windows.

Your installation is successful if you can do these in command line.

echo "import pytorch3d;print(pytorch3d.__version__); \
 from pytorch3d.renderer import MeshRenderer;print(MeshRenderer);\
 from pytorch3d.structures import Meshes;print(Meshes);\
 from pytorch3d.renderer import cameras;print(cameras);\
 from pytorch3d.transforms import Transform3d;print(Transform3d);"|python

echo "import torch;device=torch.device('cuda');\
 from pytorch3d.utils import torus;\
 Torus = torus(r=10, R=20, sides=100, rings=100, device=device);\
 print(Torus.verts_padded());"|python

Install MMHuman3D

a. Build mmcv-full & mmpose & mmdet & mmtrack

	mmcv-full

We recommend you to install the pre-build package as below.

For CPU:

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cpu/{torch_version}/index.html

Please replace {torch_version} in the url to your desired one.

For GPU:

pip install "mmcv-full>=1.3.17,<=1.5.3" -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html

Please replace {cu_version} and {torch_version} in the url to your desired one.

For example, to install mmcv-full with CUDA 10.2 and PyTorch 1.8.0, use the following command:

pip install "mmcv-full>=1.3.17,<=1.5.3" -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

See here [https://mmcv.readthedocs.io/en/latest/get_started/installation.html] for different versions of MMCV compatible to different PyTorch and CUDA versions.
For more version download link, refer to openmmlab-download [https://download.openmmlab.com/mmcv/dist/index.html].

Optionally you can choose to compile mmcv from source by the following command

git clone https://github.com/open-mmlab/mmcv.git -b v1.5.3
cd mmcv
MMCV_WITH_OPS=1 pip install -e . # package mmcv-full, which contains cuda ops, will be installed after this step
OR pip install -e . # package mmcv, which contains no cuda ops, will be installed after this step
cd ..

Important: You need to run pip uninstall mmcv first if you have mmcv installed. If mmcv and mmcv-full are both installed, there will be ModuleNotFoundError.

	mmdetection (optional)

pip install "mmdet<=2.25.1"

Alternatively, you can also build MMDetection from source in case you want to modify the code:

git clone https://github.com/open-mmlab/mmdetection.git -b v2.25.1
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .

	mmpose (optional)

pip install "mmpose<=0.28.1"

Alternatively, you can also build MMPose from source in case you want to modify the code:

git clone https://github.com/open-mmlab/mmpose.git -b v0.28.1
cd mmpose
pip install -r requirements.txt
pip install -v -e .

	mmtracking (optional)

pip install "mmcls<=0.23.2" "mmtrack<=0.13.0"

Alternatively, you can also build MMTracking from source in case you want to modify the code:

git clone https://github.com/open-mmlab/mmtracking.git -b v0.13.0
cd mmtracking
pip install -r requirements/build.txt
pip install -v -e . # or "python setup.py develop"

b. Clone the mmhuman3d repository.

git clone https://github.com/open-mmlab/mmhuman3d.git
cd mmhuman3d

c. Install build requirements and then install mmhuman3d.

pip install -v -e . # or "python setup.py develop"

A from-scratch setup script

Create conda environment
conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab

Install ffmpeg
conda install ffmpeg

Install PyTorch
conda install pytorch==1.8.0 torchvision cudatoolkit=10.2 -c pytorch -y

Install PyTorch3D
conda install -c fvcore -c iopath -c conda-forge fvcore iopath -y
conda install -c bottler nvidiacub -y
conda install pytorch3d -c pytorch3d -y
Alternatively from source in case of dependency conflicts
git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d
pip install .
cd ..

Install mmcv-full
pip install "mmcv-full>=1.3.17,<1.6.0" -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

Optional: install mmdetection & mmpose & mmtracking
pip install "mmdet<=2.25.1"
pip install "mmpose<=0.28.1"
pip install "mmcls<=0.23.2" "mmtrack<=0.13.0"

Install mmhuman3d
git clone https://github.com/open-mmlab/mmhuman3d.git
cd mmhuman3d
pip install -v -e .

Getting Started

	Getting Started

	Installation

	Data Preparation

	Body Model Preparation

	Inference / Demo

	Offline Demo

	Online Demo

	Evaluation

	Evaluate with a single GPU / multiple GPUs

	Evaluate with slurm

	Training

	Training with a single / multiple GPUs

	Training with Slurm

	More Tutorials

Installation

Please refer to install.md for installation.

Data Preparation

Please refer to data_preparation.md for data preparation.

Body Model Preparation

	SMPL [https://smpl.is.tue.mpg.de/] v1.0 is used in our experiments.

	Neutral model can be downloaded from SMPLify [https://smplify.is.tue.mpg.de/].

	All body models have to be renamed in SMPL_{GENDER}.pkl format.

For example, mv basicModel_neutral_lbs_10_207_0_v1.0.0.pkl SMPL_NEUTRAL.pkl

	J_regressor_extra.npy [https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/J_regressor_extra.npy?versionId=CAEQHhiBgIDD6c3V6xciIGIwZDEzYWI5NTBlOTRkODU4OTE1M2Y4YTI0NTVlZGM1]

	J_regressor_h36m.npy [https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/J_regressor_h36m.npy?versionId=CAEQHhiBgIDE6c3V6xciIDdjYzE3MzQ4MmU4MzQyNmRiZDA5YTg2YTI5YWFkNjRi]

	smpl_mean_params.npz [https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/smpl_mean_params.npz?versionId=CAEQHhiBgICN6M3V6xciIDU1MzUzNjZjZGNiOTQ3OWJiZTJmNThiZmY4NmMxMTM4]

Download the above resources and arrange them in the following file structure:

mmhuman3d
├── mmhuman3d
├── docs
├── tests
├── tools
├── configs
└── data
 └── body_models
 ├── J_regressor_extra.npy
 ├── J_regressor_h36m.npy
 ├── smpl_mean_params.npz
 └── smpl
 ├── SMPL_FEMALE.pkl
 ├── SMPL_MALE.pkl
 └── SMPL_NEUTRAL.pkl

Inference / Demo

Offline Demo

We provide a demo script to estimate SMPL parameters for single-person or multi-person from the input image or video with the bounding box detected by MMDetection or MMTracking. With this demo script, you only need to choose a pre-trained model (we currently only support HMR [https://github.com/open-mmlab/mmhuman3d/tree/main/configs/hmr/], SPIN [https://github.com/open-mmlab/mmhuman3d/tree/main/configs/spin/], VIBE [https://github.com/open-mmlab/mmhuman3d/tree/main/configs/vibe/] and PARE [https://github.com/open-mmlab/mmhuman3d/tree/main/configs/pare/], more SOTA methods will be added in the future) from our model zoo and specify a few arguments, and then you can get the estimated results.

Some useful configs are explained here:

	If you specify --output and --show_path, the demo script will save the estimated results into human_data and render the estimated human mesh.

	If you specify --smooth_type, the demo will be smoothed using specific method. We now support filters gaus1d,oneeuro, savgol and learning-based method smoothnet, more information can be find here.

	If you specify --speed_up_type, the demo will be processed more quickly using specific method. We now support learning-based method deciwatch, more information can be find here.

For single-person:

python demo/estimate_smpl.py \
 ${MMHUMAN3D_CONFIG_FILE} \
 ${MMHUMAN3D_CHECKPOINT_FILE} \
 --single_person_demo \
 --det_config ${MMDET_CONFIG_FILE} \
 --det_checkpoint ${MMDET_CHECKPOINT_FILE} \
 --input_path ${VIDEO_PATH_OR_IMG_PATH} \
 [--show_path ${VIS_OUT_PATH}] \
 [--output ${RESULT_OUT_PATH}] \
 [--smooth_type ${SMOOTH_TYPE}] \
 [--speed_up_type ${SPEED_UP_TYPE}] \
 [--draw_bbox] \

Example:

python demo/estimate_smpl.py \
 configs/hmr/resnet50_hmr_pw3d.py \
 data/checkpoints/resnet50_hmr_pw3d.pth \
 --single_person_demo \
 --det_config demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
 --det_checkpoint https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
 --input_path demo/resources/single_person_demo.mp4 \
 --show_path vis_results/single_person_demo.mp4 \
 --output demo_result \
 --smooth_type savgol \
 --speed_up_type deciwatch \
 --draw_bbox

For multi-person:

python demo/estimate_smpl.py \
 ${MMHUMAN3D_CONFIG_FILE} \
 ${MMHUMAN3D_CHECKPOINT_FILE} \
 --multi_person_demo \
 --tracking_config ${MMTRACKING_CONFIG_FILE} \
 --input_path ${VIDEO_PATH_OR_IMG_PATH} \
 [--show_path ${VIS_OUT_PATH}] \
 [--output ${RESULT_OUT_PATH}] \
 [--smooth_type ${SMOOTH_TYPE}] \
 [--speed_up_type ${SPEED_UP_TYPE}] \
 [--draw_bbox]

Example:

python demo/estimate_smpl.py \
 configs/hmr/resnet50_hmr_pw3d.py \
 data/checkpoints/resnet50_hmr_pw3d.pth \
 --multi_person_demo \
 --tracking_config demo/mmtracking_cfg/deepsort_faster-rcnn_fpn_4e_mot17-private-half.py \
 --input_path demo/resources/multi_person_demo.mp4 \
 --show_path vis_results/multi_person_demo.mp4 \
 --smooth_type savgol \
 --speed_up_type deciwatch \
 [--draw_bbox]

Note that the MMHuman3D checkpoints can be downloaded from the model zoo.
Here we take HMR (resnet50_hmr_pw3d.pth) as an example.

Online Demo

We provide a webcam demo script to estimate SMPL parameters from the camera or a specified video file. You can simply run the following command:

python demo/webcam_demo.py

Some useful arguments are explained here:

	If you specify --output, the webcam demo script will save the visualization results into a file. This may reduce the frame rate.

	If you specify --synchronous, video I/O and inference will be temporally aligned. Note that this will reduce the frame rate.

	If you want run the webcam demo in offline mode on a video file, you should set --cam-id=VIDEO_FILE_PATH. Note that --synchronous should be set to True in this case.

	The video I/O and model inference are running asynchronously and the latter usually takes more time for a single frame. To allevidate the time delay, you can:

	set --display-delay=MILLISECONDS to defer the video stream, according to the inference delay shown at the top left corner. Or,

	set --synchronous=True to force video stream being aligned with inference results. This may reduce the frame rate.

Evaluation

We provide pretrained models in the respective method folders in config [https://github.com/open-mmlab/mmhuman3d/tree/main/configs].

Evaluate with a single GPU / multiple GPUs

python tools/test.py ${CONFIG} --work-dir=${WORK_DIR} ${CHECKPOINT} --metrics=${METRICS}

Example:

python tools/test.py configs/hmr/resnet50_hmr_pw3d.py --work-dir=work_dirs/hmr work_dirs/hmr/latest.pth --metrics pa-mpjpe mpjpe

Evaluate with slurm

If you can run MMHuman3D on a cluster managed with slurm [https://slurm.schedmd.com/], you can use the script slurm_test.sh.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG} ${WORK_DIR} ${CHECKPOINT} --metrics ${METRICS}

Example:

./tools/slurm_test.sh my_partition test_hmr configs/hmr/resnet50_hmr_pw3d.py work_dirs/hmr work_dirs/hmr/latest.pth 8 --metrics pa-mpjpe mpjpe

Training

Training with a single / multiple GPUs

python tools/train.py ${CONFIG_FILE} ${WORK_DIR} --no-validate

Example: using 1 GPU to train HMR.

python tools/train.py ${CONFIG_FILE} ${WORK_DIR} --gpus 1 --no-validate

Training with Slurm

If you can run MMHuman3D on a cluster managed with slurm [https://slurm.schedmd.com/], you can use the script slurm_train.sh.

./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} ${GPU_NUM} --no-validate

Common optional arguments include:

	--resume-from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file.

	--no-validate: Whether not to evaluate the checkpoint during training.

Example: using 8 GPUs to train HMR on a slurm cluster.

./tools/slurm_train.sh my_partition my_job configs/hmr/resnet50_hmr_pw3d.py work_dirs/hmr 8 --no-validate

You can check slurm_train.sh [https://github.com/open-mmlab/mmhuman3d/tree/main/tools/slurm_train.sh] for full arguments and environment variables.

More Tutorials

	Camera conventions

	Keypoint conventions

	Custom keypoint conventions

	HumanData

	Keypoint visualization

	Mesh visualization

Benchmark and Model Zoo

We provide configuration files, log files and pretrained models for all supported methods.
Moreover, all pretrain models are evaluated on three common benchmarks: 3DPW, Human3.6M, and
MPI-INF-3DHP.

Baselines

HMR

Please refer to HMR [https://github.com/open-mmlab/mmhuman3d/tree/main/configs/hmr/] for details.

SPIN

Please refer to SPIN [https://github.com/open-mmlab/mmhuman3d/tree/main/configs/spin/] for details.

VIBE

Please refer to VIBE [https://github.com/open-mmlab/mmhuman3d/tree/main/configs/vibe/] for details.

HybrIK

Please refer to HybrIK [https://github.com/open-mmlab/mmhuman3d/tree/main/configs/hybrik/] for details.

PARE

Please refer to PARE [https://github.com/open-mmlab/mmhuman3d/tree/main/configs/pare/] for details.

ExPose

Please refer to ExPose [https://github.com/open-mmlab/mmhuman3d/tree/main/configs/expose/] for details.

PyMAF-X

Please refer to PyMAF-X [https://github.com/open-mmlab/mmhuman3d/tree/main/configs/pymafx/] for details.

HumanData

Overview

HumanData is a subclass of python built-in class dict, containing single-view, image-based data for a human being. It has a well-defined base structure for universal data, but it is also compatible with customized data for new features. A native HumanData contains values in numpy.ndarray or python built-in types, it holds no data in torch.Tensor, but you can convert arrays to torch.Tensor(even to GPU Tensor) by human_data.to() easily.

Key/Value definition

The keys and values supported by HumanData are described as below.

	image_path: (N,), list of str, each element is a relative path from the root folder (exclusive) to the image.

	bbox_xywh: (N, 5), numpy array, bounding box with confidence, coordinates of bottom-left point x, y, width w and height h of bbox, score at last.

	config: (), str, the flag name of config for individual dataset.

	keypoints2d: (N, 190, 3), numpy array, 2d joints of smplx model with confidence, joints from each datasets are mapped to HUMAN_DATA joints.

	keypoints3d: (N, 190, 4), numpy array, 3d joints of smplx model with confidence. Same as above.

	smpl: (1,), dict, keys are [‘body_pose’: numpy array, (N, 23, 3), ‘global_orient’: numpy array, (N, 3), ‘betas’: numpy array, (N, 10), ‘transl’: numpy array, (N, 3)].

	smplx: (1,), dict, keys are [‘body_pose’: numpy array, (N, 21, 3),’global_orient’: numpy array, (N, 3), ‘betas’: numpy array, (N, 10), ‘transl’: numpy array, (N, 3), ‘left_hand_pose’: numpy array, (N, 15, 3), ‘right_hand_pose’: numpy array, (N, 15, 3), ‘expression’: numpy array (N, 10), ‘leye_pose’: numpy array (N, 3), ‘reye_pose’: (N, 3), ‘jaw_pose’: numpy array (N, 3)].

	meta: (1,), dict, its keys are meta data from dataset like ‘gender’.

	keypoints2d_mask: (190,), numpy array, mask for which keypoint is valid in keypoints2d. 0 means that the joint in this position cannot be found in original dataset.

	keypoints3d_mask: (190,), numpy array, mask for which keypoint is valid in keypoints3d. 0 means that the joint in this position cannot be found in original dataset.

	misc: (1,), dict, keys and values are defined by user. The space misc takes(sys.getsizeof(misc)) shall be no more than 6MB.

Key check in HumanData.

Only keys above are allowed as top level key in a default HumanData. If you cannot work with that, there’s also a way out. Construct a HumanData instance with __key_strict__ == False:

human_data = HumanData.new(key_strict=False)
human_data['video_path'] = 'test.mp4'

The returned human_data will allow any customized keys, logging a warning at the first time HumanData sees a new key. Just ignore the warning if you do know that you are using a customized key, it will not appear again before the program ends.

If you have already constructed a HumanData, and you want to change the strict mode, use set_key_strict:

human_data = HumanData.fromfile('human_data.npz')
key_strict = human_data.get_key_strict()
human_data.set_key_strict(not key_strict)

Value check in HumanData.

Only values above will be check when human_data[key] == value is called, and the constraints are defined in HumanData.SUPPORTED_KEYS.

For each value, an exclusive type must be specified under its key:

'smpl': {
 'type': dict,
},

For value as numpy.ndarray, shape and dim shall be defined:

'keypoints3d': {
 'type': np.ndarray,
 'shape': (-1, -1, 4),
 # value.ndim==3, and value.shape[2]==4
 # value.shape[0:2] is arbitrary.
 'dim': 0
 # dimension 0 marks time(frame index, or second)
},

For value which is constant along frame axis, set dim to -1 to ignore frame check:

'keypoints3d_mask': {
 'type': np.ndarray,
 'shape': (-1,),
 'dim': -1
},

Data compression

Compression with mask

As the keypoint convention named HUMAN_DATA is a union of keypoint definitions from various datasets, it is common that some keypoints are missing. In this situation, the missing ones are filtered by mask:

keypoints2d_agora is a numpy array in shape [frame_num, 127, 3].
There are 127 keypoints defined by agora.
keypoints2d_human_data, mask = convert_kps(keypoints2d_agora, 'agora', 'human_data')
keypoints2d_human_data is a numpy array in shape [frame_num, 190, 3], only 127/190 are valid
mask is a numpy array in shape [190,], with 127 ones and 63 zeros inside

Set keypoints2d_mask and keypoints2d. It is obvious that there are redundant zeros in keypoints2d:

human_data = HumanData()
human_data['keypoints2d_mask'] = mask
human_data['keypoints2d'] = keypoints2d_human_data

Call compress_keypoints_by_mask() to get rid of the zeros. This method checks if any key containing keypoints has a corresponding mask, and performs keypoints compression if both keypoints and masks are present. :

human_data.compress_keypoints_by_mask()

Call get_raw_value() to get the compressed raw value stored in HumanData instance. When getting item with [], the keypoints padded with zeros will be returned:

keypoints2d_human_data = human_data.get_raw_value('keypoints2d')
print(keypoints2d_human_data.shape) # [frame_num, 127, 3]
keypoints2d_human_data = human_data['keypoints2d']
print(keypoints2d_human_data.shape) # [frame_num, 190, 3]

In keypoints_compressed mode, keypoints are allowed to be edited. There are two different ways, set with padded data or set the compressed data directly:

padded_keypoints2d = np.zeros(shape=[100, 190, 3])
human_data['keypoints2d'] = padded_keypoints2d # [frame_num, 190, 3]
compressed_keypoints2d = np.zeros(shape=[100, 127, 3])
human_data.set_raw_value('keypoints2d', compressed_keypoints2d) # [frame_num, 127, 3]

When a HumanData instance is in keypoints_compressed mode, all masks of keypoints are locked. If you are trying to edit it, a warning will be logged and the value won’t change. To modify a mask, de-compress it with decompress_keypoints():

human_data.decompress_keypoints()

Features above also work with any key pairs like keypoints* and keypoints*_mask.

Compression for file

Call dump() to save HumanData into a compressed .npz file.

The dumped file can be load by load() :

save
human_data.dump('./dumped_human_data.npz')
load
another_human_data = HumanData()
another_human_data.load('./dumped_human_data.npz')

Sometimes a HumanData instanse is too large to dump, an error will be raised by numpy.savez_compressed(). In this case, call dump_by_pickle and load_by_pickle for file operation.

Compression by key

If a HumanData instance is in not in key_strict mode, it may contains unsupported items which are not necessary. Call pop_unsupported_items() to remove those items will save space for you:

human_data = HumanData.fromfile('human_data_not_strict.npz')
human_data.pop_unsupported_items()
set instance.__key_strict__ from True to False will also do
human_data.set_key_strict(True)

Data selection

Select by shape

Assume that keypoints2d is an array in shape [200, 190, 3], only the first 10 frames are needed:

first_ten_frames = human_data.get_value_in_shape('keypoints2d', shape=[10, -1, -1])

In some situation, we need to pad all arrays to a certain size:

pad keypoints2d from [200, 190, 3] to [200, 300, 3] with zeros
padded_keypoints2d = human_data.get_value_in_shape('keypoints2d', shape=[200, 300, -1])
padding value can be modified
padded_keypoints2d = human_data.get_value_in_shape('keypoints2d', shape=[200, 300, -1], padding_constant=1)

Select temporal slice

Assume that there are 200 frames in a HumanData instance, only data between 10 and 20 are needed:

all supported values will be sliced
sub_human_data = human_data.get_slice(10, 21)

Downsample is also supported, for example, select 33%:

select [0, 3, 6, 9,..., 198]
sub_human_data = human_data.get_slice(0, 200, 3)

To torch.Tensor

As introduced, a native HumanData contains values in numpy.ndarray or python built-in types, but the numpy.ndarray can be easily convert to torch.Tensor:

All values as ndarray will be converted to a cpu Tensor.
Values in other types will not change.
It returns a dict like HumanData.
dict_of_tensor = human_data.to()
GPU is also supported
gpu0_device = torch.device('cuda:0')
dict_of_gpu_tensor = human_data.to(gpu0_device)

MultiHumanData

MulitHumanData is designed to support multi-human body mesh recovery, who inherits from HumanData. In HumanData, the data can be accessed directly through the index, because the data and the image are in one-to-one correspondence. However, data and image have a many-to-one correspondence in MultiHumanData.

Based on HumanData, MultiHumanData adds a new key named 'frame_range' as follows:

'frame_range': {
 'type': np.ndarray,
 'shape': (-1, 2),
 'dim': 0
 }

frame_range and image are in one-to-one correspondence.
Each element in frame_range has two pointers that point to a data-block.

Suppose we have an instance of MultiHumanData and we want to access the data corresponding to the i-th image. First, we index the frame_range using primary index i, which will return two points. We then use these two pointers to access all data corresponding to the i-th image.

image_0 ----> human_0 <--- frame_range[0][0]
 - .
 - .
 --> human_(n-1) <--- frame_range[0][0] + (n-1)
 -> human_n <--- frame_range[0][1]
 .
 .
 .

image_n ----> human_0 <--- frame_range[n][0]
 - .
 - .
 --> human_(n-1) <--- frame_range[n][0] + (n-1)
 -> human_n <--- frame_range[n][1]

Data preparation

	Datasets for supported algorithms

	Folder structure

	AGORA

	COCO

	COCO-WholeBody

	CrowdPose

	EFT

	GTA-Human

	Human3.6M

	Human3.6M Mosh

	HybrIK

	LSP

	LSPET

	MPI-INF-3DHP

	MPII

	PoseTrack18

	Penn Action

	PW3D

	SPIN

	SURREAL

Overview

Our data pipeline use HumanData structure for
storing and loading. The proprocessed npz files can be obtained from raw data using our data converters, and the supported configs can be found here [https://github.com/open-mmlab/mmhuman3d/tree/main/tools/convert_datasets.py].

These are our supported converters and their respective dataset-name:

	AgoraConverter (agora)

	AmassConverter (amass)

	CocoConverter (coco)

	CocoHybrIKConverter (coco_hybrik)

	CocoWholebodyConverter (coco_wholebody)

	CrowdposeConverter (crowdpose)

	EftConverter (eft)

	GTAHumanConverter (gta_human)

	H36mConverter (h36m_p1, h36m_p2)

	H36mHybrIKConverter (h36m_hybrik)

	InstaVibeConverter (instavariety_vibe)

	LspExtendedConverter (lsp_extended)

	LspConverter (lsp_original, lsp_dataset)

	MpiiConverter (mpii)

	MpiInf3dhpConverter (mpi_inf_3dhp)

	MpiInf3dhpHybrIKConverter (mpi_inf_3dhp_hybrik)

	PennActionConverter (penn_action)

	PosetrackConverter (posetrack)

	Pw3dConverter (pw3d)

	Pw3dHybrIKConverter (pw3d_hybrik)

	SurrealConverter (surreal)

	SpinConverter (spin)

	Up3dConverter (up3d)

 Keypoints convention

Keypoints convention

Overview

Our convention tries to consolidate the different keypoints definition across various
commonly used datasets. Due to differences in data-labelling procedures, keypoints across datasets with the same name might not map to semantically similar locations on the human body. Conversely, keypoints with different names might correspond to the same location on the human body. To unify the different keypoints correspondences across datasets, we adopted the human_data convention
as the base convention for converting and storing our keypoints.

How to use

Converting between conventions

Keypoints can be converted between different conventions easily using the convert_kps function.

To convert a human_data keypoints to coco convention, specify the source and
destination convention for conversion.

from mmhuman3d.core.conventions.keypoints_mapping import convert_kps

keypoints_human_data = np.zeros((100, 190, 3))
keypoints_coco, mask = convert_kps(keypoints_human_data, src='human_data', dst='coco')
assert mask.all()==1

The output mask should be all ones if the dst convention is the subset of the src convention.
You can use the mask as the confidence of the keypoints since those keypoints with no correspondence are set to a default value with 0 confidence.

Converting with confidence

If you have confidential information of your keypoints, you can use an original mask to mark it, then the information will be updated into the returned mask.
E.g., you want to convert a smpl keypoints to coco keypoints, and you know its left_shoulder is occluded. You want to carry forward this information during the converting. So you can set an original_mask and convert it to coco by doing:

import numpy as np
from mmhuman3d.core.conventions.keypoints_mapping import KEYPOINTS_FACTORY, convert_kps

keypoints = np.zeros((1, len(KEYPOINTS_FACTORY['smpl']), 3))
confidence = np.ones((len(KEYPOINTS_FACTORY['smpl'])))

assume that 'left_shoulder' point is invalid.
confidence[KEYPOINTS_FACTORY['smpl'].index('left_shoulder')] = 0

_, conf_coco = convert_kps(
 keypoints=keypoints, confidence=confidence, src='smpl', dst='coco')
_, conf_coco_full = convert_kps(
 keypoints=keypoints, src='smpl', dst='coco')

assert conf_coco[KEYPOINTS_FACTORY['coco'].index('left_shoulder')] == 0
conf_coco[KEYPOINTS_FACTORY['coco'].index('left_shoulder')] = 1
assert (conf_coco == conf_coco_full).all()

Our mask represents valid information, its dtype is uint8, while keypoint confidence usually ranges from 0 to 1.
E.g., you want to convert a smpl keypoints to coco keypoints, and you know its left_shoulder is occluded. You want to carry forward this information during the converting. So you can set an original_mask and convert it to coco by doing:

confidence = np.ones((len(KEYPOINTS_FACTORY['smpl'])))
confidence[KEYPOINTS_FACTORY['smpl'].index('left_shoulder')] = 0.5
kp_smpl = np.concatenate([kp_smpl, confidence], -1)
kp_smpl_converted, mask = convert_kps(kp_smpl, src='smpl', dst='coco')
new_confidence = kp_smpl_converted[..., 2:]
assert new_confidence[KEYPOINTS_FACTORY['smpl'].index('left_shoulder')] == 0.5

Supported Conventions

These are the supported conventions:

	AGORA

	COCO

	COCO-WHOLEBODY

	CrowdPose

	GTA-Human

	Human3.6M

	human_data

	HybrIK

	LSP

	MPI-INF-3DHP

	MPII

	openpose

	PennAction

	PoseTrack18

	PW3D

	SMPL

	SMPL-X

HUMANDATA

The first 144 keypoints in HumanData correspond to that in SMPL-X.
Keypoints with suffix _extra refer to those obtained from Jregressor_extra.
Keypoints with suffix _openpose refer to those obtained from OpenPose predictions.

There are several keypoints from MPI-INF-3DHP, Human3.6M and Posetrack that has the same name but were semantically different from keypoints in SMPL-X. As such, we added an extra suffix to differentiate those keypoints i.e. head_h36m.

AGORA

AGORA (CVPR'2021)
@inproceedings{Patel:CVPR:2021,
 title = {{AGORA}: Avatars in Geography Optimized for Regression Analysis},
 author = {Patel, Priyanka and Huang, Chun-Hao P. and Tesch, Joachim and Hoffmann, David T. and Tripathi, Shashank and Black, Michael J.},
 booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition ({CVPR})},
 month = jun,
 year = {2021},
 month_numeric = {6}
}

COCO

COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
 title={Microsoft coco: Common objects in context},
 author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
 booktitle={European conference on computer vision},
 pages={740--755},
 year={2014},
 organization={Springer}
}

COCO-WHOLEBODY

COCO-Wholebody (ECCV'2020)
@inproceedings{jin2020whole,
 title={Whole-Body Human Pose Estimation in the Wild},
 author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
 booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
 year={2020}
}

CrowdPose

CrowdPose (CVPR'2019)
@article{li2018crowdpose,
 title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
 author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and Lu, Cewu},
 journal={Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition ({CVPR})},
 year={2019}
}

Human3.6M

Human3.6M (TPAMI'2014)
@article{h36m_pami,
 author = {Ionescu, Catalin and Papava, Dragos and Olaru, Vlad and Sminchisescu, Cristian},
 title = {Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments},
 journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
 publisher = {IEEE Computer Society},
 volume = {36},
 number = {7},
 pages = {1325-1339},
 month = {jul},
 year = {2014}
}

GTA-Human

GTA-Human (arXiv'2021)
@article{cai2021playing,
 title={Playing for 3D Human Recovery},
 author={Cai, Zhongang and Zhang, Mingyuan and Ren, Jiawei and Wei, Chen and Ren, Daxuan and Li, Jiatong and Lin, Zhengyu and Zhao, Haiyu and Yi, Shuai and Yang, Lei and others},
 journal={arXiv preprint arXiv:2110.07588},
 year={2021}
}

HybrIK

HybrIK (CVPR'2021)
@inproceedings{li2020hybrikg,
 author = {Li, Jiefeng and Xu, Chao and Chen, Zhicun and Bian, Siyuan and Yang, Lixin and Lu, Cewu},
 title = {HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation},
 booktitle={CVPR 2021},
 pages={3383--3393},
 year={2021},
 organization={IEEE}
}

LSP

LSP (BMVC'2010)
@inproceedings{johnson2010clustered,
 title={Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation.},
 author={Johnson, Sam and Everingham, Mark},
 booktitle={bmvc},
 volume={2},
 number={4},
 pages={5},
 year={2010},
 organization={Citeseer}
}

MPI-INF-3DHP

MPI_INF_3DHP (3DV'2017)
@inproceedings{mono-3dhp2017,
 author = {Mehta, Dushyant and Rhodin, Helge and Casas, Dan and Fua, Pascal and Sotnychenko, Oleksandr and Xu, Weipeng and Theobalt, Christian},
 title = {Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision},
 booktitle = {3D Vision (3DV), 2017 Fifth International Conference on},
 url = {http://gvv.mpi-inf.mpg.de/3dhp_dataset},
 year = {2017},
 organization={IEEE},
 doi={10.1109/3dv.2017.00064},
}

MPII

MPII (CVPR'2014)
@inproceedings{andriluka14cvpr,
 author = {Mykhaylo Andriluka and Leonid Pishchulin and Peter Gehler and Schiele, Bernt},
 title = {2D Human Pose Estimation: New Benchmark and State of the Art Analysis},
 booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
 year = {2014},
 month = {June}
}

PoseTrack18

PoseTrack18 (CVPR'2018)
@inproceedings{andriluka2018posetrack,
 title={Posetrack: A benchmark for human pose estimation and tracking},
 author={Andriluka, Mykhaylo and Iqbal, Umar and Insafutdinov, Eldar and Pishchulin, Leonid and Milan, Anton and Gall, Juergen and Schiele, Bernt},
 booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
 pages={5167--5176},
 year={2018}
}

OpenPose

OpenPose(TPMAI'2019)
@article{8765346,
 author = {Z. {Cao} and G. {Hidalgo Martinez} and T. {Simon} and S. {Wei} and Y. A. {Sheikh}},
 journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
 title = {OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields},
 year = {2019}
}

PennAction

PennAction(ICCV'2013)
@inproceedings{zhang2013,
 title={From Actemes to Action: A Strongly-supervised Representation for Detailed Action Understanding},
 author={Zhang, Weiyu and Zhu, Menglong and Derpanis, Konstantinos},
 booktitle={Proceedings of the International Conference on Computer Vision},
 year={2013}
}

SMPL

SMPL(ACM'2015)
@article{SMPL:2015,
 author = {Loper, Matthew and Mahmood, Naureen and Romero, Javier and Pons-Moll, Gerard and Black, Michael J.},
 title = {{SMPL}: A Skinned Multi-Person Linear Model},
 journal = {ACM Trans. Graphics (Proc. SIGGRAPH Asia)},
 month = oct,
 number = {6},
 pages = {248:1--248:16},
 publisher = {ACM},
 volume = {34},
 year = {2015}
 }

SMPL-X

SMPL-X(CVPR'2019)
@inproceedings{SMPL-X:2019,
 title = {Expressive Body Capture: {3D} Hands, Face, and Body from a Single Image},
 author = {Pavlakos, Georgios and Choutas, Vasileios and Ghorbani, Nima and Bolkart, Timo and Osman, Ahmed A. A. and Tzionas, Dimitrios and Black, Michael J.},
 booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
 pages = {10975--10985},
 year = {2019}
}

Customizing keypoint convention

Please refer to customize_keypoints_convention.

 Customize keypoints convention

Customize keypoints convention

Overview

If your dataset use an unsupported convention, a new convention can be added following this documentation.

These are the conventions that our project currently support:

	agora

	coco

	coco_wholebody

	crowdpose

	h36m

	human_data

	hybrik

	lsp

	mpi_inf_3dhp

	mpii

	openpose

	penn_action

	posetrack

	pw3d

	smpl

	smplx

1. Create a new convention

Please follow
mmhuman3d/core/conventions/keypoints_mapping/human_data.py [https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/human_data.py] to create a file named NEW_CONVENTION.py. In this file,
NEW_KEYPOINTS is a list containing keypoints naming and order specific to the new convention.

For instance, if we want to create a new convention for AGORA dataset, agora.py would contain:

AGORA_KEYPOINTS = [
 'pelvis',
 'left_hip',
 'right_hip'
 ...
]

2. Search for keypoint names in human_data.

In this project, keypoints that share the same naming across datasets should have the exact same semantic definition in the human body. human_data convention has already consolidated the different keypoints naming and correspondences across our supported datasets.

For each keypoint in NEW_KEYPOINTS, we have to check (1) if the keypoint name exists in mmhuman3d/core/conventions/keypoints_mapping/human_data.py [https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/human_data.py] and (2) if the keypoint has a correspondence i.e. maps to the same
location as the ones defined in human_data.

If both conditions are met, retain the keypoint name in NEW_CONVENTION.py.

3. Search for keypoints correspondence in human_data.

If a keypoint in NEW_KEYPOINTS shares the same correspondence as a keypoint that is named differently in the human_data convention i.e. head in NEW_CONVENTION.py maps to head_extra
in human_data, rename the keypoint to follow the new one in our convention i.e. head-> head_extra.

4. Add a new keypoint to human_data

If the keypoint has no correspondence nor share an existing name to the ones defined in human_data, please list it as well but add a prefix to the original name to differentiate it from those with existing correspondences i.e. spine_3dhp

We may expand human_data to the new keypoint if necessary. However, this can only be done after checking that the new keypoint do not have a correspondence and there is no conflicting names.

5. Initialise the new set of keypoint convention

Add import for NEW_CONVENTION.py in
mmhuman3d/core/conventions/keypoints_mapping/__init__.py [https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/__init__.py#L8-25], and add the identifier to dict KEYPOINTS_FACTORY [https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/__init__.py#L27-52].

For instance, if our new convention is agora:

add import
from mmhuman3d.core.conventions.keypoints_mapping import (
 agora,
 ...
)

add to factory
KEYPOINTS_FACTORY = {
 'agora': agora.AGORA_KEYPOINTS,
 ...
}

6. Using keypoints convention for keypoints mapping

To convert keypoints from any existing convention to your newly defined convention (or vice versa), you can use the convert_kps function mmhuman3d/core/conventions/keypoints_mapping/__init__.py [https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/__init__.py], which produce a mask containing 0 or 1 indicating if the corresponding point should be filtered or retained.

To convert from coco to new convention:

 new_kps, mask = convert_kps(smplx_keypoints, src='coco', dst='NEW_CONVENTION')

To convert from new convention to human_data:

 new_kps, mask = convert_kps(smplx_keypoints, src='NEW_CONVENTION', dst='human_data')

 Cameras

Cameras

Camera Initialization

We follow Pytorch3D cameras. The camera extrinsic matrix is defined as the camera to world transformation, and uses right matrix multiplication, whereas the intrinsic matrix uses left matrix multiplication. Nevertheless, our interface provides opencv convention that defines the camera the same way as an OpenCV camera, would be helpful if you are more familiar with that.

	Slice cameras:

In mmhuman3d, the recommended way to initialize a camera is by passing K, R, T matrix directly.
You can slice the cameras by index. You can also concat the cameras in batch dim.

from mmhuman3d.core.cameras import PerspectiveCameras
import torch
K = torch.eye(4, 4)[None]
R = torch.eye(3, 3)[None]
T = torch.zeros(100, 3)
Batch of K, R, T should all be the same or some of them could be 1. The final batch size will be the biggest one.
cam = PerspectiveCameras(K=K, R=R, T=T)
assert cam.R.shape == (100, 3, 3)
assert cam.K.shape == (100, 4, 4)
assert cam.T.shape == (100, 3)
assert (cam[:10].K == cam.K[:10]).all()

	Build cameras:

Wrapped by mmcv.Registry.
In mmhuman3d, the recommended way to initialize a camera is by passing K, R, T matrix directly, but you also have the options to pass focal_length and principle_point as the input.

Take the usually used PerspectiveCameras as examples. If K, R, T are not specified, the K will use default K by compute_default_projection_matrix with default focal_length and principal_point and R will be identical matrix, T will be zeros. You can also specify by overwriting the parameters for compute_default_projection_matrix.

from mmhuman3d.core.cameras import build_cameras

Initialize a perspective camera with given K, R, T matrix.
It is recommended that the batches of K, R, T either the same or be 1.
K = torch.eye(4, 4)[None]
R = torch.eye(3, 3)[None]
T = torch.zeros(10, 3)

height, width = 1000
cam1 = build_cameras(
 dict(
 type='PerspectiveCameras',
 K=K,
 R=R,
 T=T,
 in_ndc=True,
 image_size=(height, width),
 convention='opencv',
))

This is the same as:
cam2 = PerspectiveCameras(
 K=K,
 R=R,
 T=T,
 in_ndc=True,
 image_size=1000, # single number represents square images.
 convention='opencv',
)
assert cam1.K.shape == cam2.K.shape == (10, 4, 4)
assert cam1.R.shape == cam2.R.shape == (10, 3, 3)
assert cam1.T.shape == cam2.T.shape == (10, 3)

Initialize a perspective camera with specific `image_size`, `principal_points`, `focal_length`.
`in_ndc = False` means the intrinsic matrix `K` defined in screen space. The `focal_length` and `principal_point` in `K` is defined in scale of pixels. This `principal_points` is (500, 500) pixels and `focal_length` is 1000 pixels.
cam = build_cameras(
 dict(
 type='PerspectiveCameras',
 in_ndc=False,
 image_size=(1000, 1000),
 principal_points=(500, 500),
 focal_length=1000,
 convention='opencv',
))

assert (cam.K[0] == torch.Tensor([[1000., 0., 500., 0.],
 [0., 1000., 500., 0.],
 [0., 0., 0., 1.],
 [0., 0., 1., 0.]]).view(4, 4)).all()

Initialize a weakperspective camera with given K, R, T. weakperspective camera support `in_ndc = True` only.
cam = build_cameras(
 dict(
 type='WeakPerspectiveCameras',
 K=K,
 R=R,
 T=T,
 image_size=(1000, 1000)
))

If no `K`, `R`, `T` information provided
Initialize a `in_ndc` perspective camera with default matrix.
cam = build_cameras(
 dict(
 type='PerspectiveCameras',
 in_ndc=True,
 image_size=(1000, 1000),
))
Then convert it to screen. This operation requires `image_size`.
cam.to_screen_()

Camera Projection Matrixs

	Perspective:

format of intrinsic matrix:
fx, fy is focal_length, px, py is principal_point.

K = [
 [fx, 0, px, 0],
 [0, fy, py, 0],
 [0, 0, 0, 1],
 [0, 0, 1, 0],
]

Detailed information refer to Pytorch3D [https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/renderer/cameras.py#L895].

	WeakPerspective:

format of intrinsic matrix:

K = [
 [sx*r, 0, 0, tx*sx*r],
 [0, sy, 0, ty*sy],
 [0, 0, 1, 0],
 [0, 0, 0, 1],
]

WeakPerspectiveCameras is orthographics indeed, mainly for SMPL(x) projection.
Detailed information refer to mmhuman3d cameras.
This can be converted from SMPL predicted camera parameter by:

from mmhuman3d.core.cameras import WeakPerspectiveCameras
K = WeakPerspectiveCameras.convert_orig_cam_to_matrix(orig_cam)

The pred_cam is array/tensor of shape (frame, 4) consists of [scale_x, scale_y, transl_x, transl_y]. See in VIBE [https://github.com/mkocabas/VIBE/blob/master/lib/utils/renderer.py#L40-L47].

	FoVPerspective:

format of intrinsic matrix:
K = [
 [s1, 0, w1, 0],
 [0, s2, h1, 0],
 [0, 0, f1, f2],
 [0, 0, 1, 0],
]

s1, s2, w1, h1, f1, f2 are defined by FoV parameters (fov, znear, zfar, etc.), detailed information refer to Pytorch3D [https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/renderer/cameras.py].

	Orthographics:

format of intrinsic matrix:

K = [
 [fx, 0, 0, px],
 [0, fy, 0, py],
 [0, 0, 1, 0],
 [0, 0, 0, 1],
]

Detailed information refer to Pytorch3D [https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/renderer/cameras.py].

	FoVOrthographics:

K = [
 [scale_x, 0, 0, -mid_x],
 [0, scale_y, 0, -mix_y],
 [0, 0, -scale_z, -mid_z],
 [0, 0, 0, 1],
]

scale_x, scale_y, scale_z, mid_x, mid_y, mid_z are defined by FoV parameters(min_x, min_y, max_x, max_y, znear, zfar, etc.), related information refer to Pytorch3D [https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/renderer/cameras.py].

Camera Conventions

	Convert between different cameras:

We name intrinsic matrix as K, rotation matrix as R and translation matrix as T.
Different camera conventions have different axis directions, and some use left matrix multiplication and some use right matrix multiplication. Intrinsic and extrinsic matrix should be of the same multiplication convention, but some conventions like Pytorch3D uses right matrix multiplication in computation procedure but passes left matrix multiplication K when initializing the cameras(mainly for better understanding).
Conversion between NDC (normalized device coordinate) and screen also influence the intrinsic matrix, this is independent of camera conventions but should also be included.
If you want to use an existing convention, choose in ['opengl', 'opencv', 'pytorch3d', 'pyrender', 'open3d'].
E.g., you want to convert your opencv calibrated camera to Pytorch3D NDC defined camera for rendering, you can do:

from mmhuman3d.core.conventions.cameras import convert_cameras
import torch

K = torch.eye(4, 4)[None]
R = torch.eye(3, 3)[None]
T = torch.zeros(10, 3)
height, width = 1080, 1920
K, R, T = convert_cameras(
 K=K,
 R=R,
 T=T,
 in_ndc_src=False,
 in_ndc_dst=True,
 resolution_src=(height, width),
 convention_src='opencv',
 convention_dst='pytorch3d')

Input K could be None, or array/tensor of shape (batch_size, 3, 3) or (batch_size, 4, 4).
Input R could be None, or array/tensor of shape (batch_size, 3, 3).
Input T could be None, or array/tensor of shape (batch_size, 3).
If the original K is None, it will remain None. If the original R is None, it will be set as identity matrix. If the original T is None, it will be set as zeros matrix.
Please refer to Pytorch3D [https://github.com/facebookresearch/pytorch3d/blob/main/docs/notes/cameras.md] for more information about cameras in NDC and in screen space..

	Define your new camera convention:

If want to use a new convention, define your convention in CAMERA_CONVENTION_FACTORY [https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/cameras/__init__.py] by the order of right to, up to, and off screen. E.g., the first one is pyrender and its convention should be ‘+x+y+z’. ‘+’ could be ignored. The second one is opencv and its convention should be ‘+x-y-z’. The third one is Pytorch3D and its convention should be ‘-xyz’.

OpenGL(PyRender) OpenCV Pytorch3D
 y z y
 | / |
 | / |
 |_______x /________x x________ |
 / | /
 / | /
z / y | z /

Some Conversion Functions

Convert functions are also defined in conventions.cameras.

	NDC & screen:

from mmhuman3d.core.conventions.cameras import (convert_ndc_to_screen,
 convert_screen_to_ndc)

K = convert_ndc_to_screen(K, resolution=(1080, 1920), is_perspective=True)
K = convert_screen_to_ndc(K, resolution=(1080, 1920), is_perspective=True)

	3x3 & 4x4 intrinsic matrix

from mmhuman3d.core.conventions.cameras import (convert_K_3x3_to_4x4,
 convert_K_4x4_to_3x3)

K = convert_K_3x3_to_4x4(K, is_perspective=True)
K = convert_K_4x4_to_3x3(K, is_perspective=True)

	world & view:

Convert between world & view coordinates.

from mmhuman3d.core.conventions.cameras import convert_world_view
R, T = convert_world_view(R, T)

	weakperspective & perspective:

Convert between weakperspective & perspective. zmean is needed.
WeakperspectiveCameras is in_ndc, so you should pass resolution if perspective not in ndc.

from mmhuman3d.core.conventions.cameras import (
 convert_perspective_to_weakperspective,
 convert_weakperspective_to_perspective)

K = convert_perspective_to_weakperspective(
 K, zmean, in_ndc=False, resolution, convention='opencv')
K = convert_weakperspective_to_perspective(
 K, zmean, in_ndc=False, resolution, convention='pytorch3d')

Some Compute Functions

	Project 3D coordinates to screen:

points_xydepth = cameras.transform_points_screen(points)
points_xy = points_xydepth[..., :2]

	Compute depth of points:

You can simply convert points to the view coordinates and get the z value as depth. Example could be found in DepthRenderer [https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/renderer/torch3d_renderer/depth_renderer.py].

points_depth = cameras.compute_depth_of_points(points)

	Compute normal of meshes:

Use Pytorch3D to compute normal of meshes. Example could be found in NormalRenderer [https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/renderer/torch3d_renderer/normal_renderer.py].

normals = cameras.compute_normal_of_meshes(meshes)

	Get camera plane normal:

Get the normalized normal tensor which points out of the camera plane from camera center.

normals = cameras.get_camera_plane_normals()

 Visualize Keypoints

Visualize Keypoints

Visualize 2d keypoints

	simple example for visualize 2d keypoints:

You have 2d coco_wholebody keypoints of shape(10, 133, 2).

from mmhuman3d.core.visualization.visualize_keypoints2d import visualize_kp2d

visualize_kp2d(
 kp2d_coco_wholebody,
 data_source='coco_wholebody',
 output_path='some_video.mp4',
 resolution=(1024, 1024))

Then a 1024x1024 sized video with 10 frames would be save as ‘some_video.mp4’

	data_source and mask:

If your keypoints have some nonsense points, you should provide the mask. data_source is mainly used to search the limb connections and palettes. You should specify the data_source if you dataset is in convention [https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/].
E.g., convert coco_wholebody keypoints to the convention of smpl and visualize it:

from mmhuman3d.core.conventions.keypoints_mapping import convert_kps
from mmhuman3d.core.visualization.visualize_keypoints2d import visualize_kp2d

kp2d_smpl, mask = convert_kps(kp2d_coco_wholebody, src='coco_wholebody', dst='smpl')
visualize_kp2d(
 kp2d_smpl,
 mask=mask,
 output_path='some_video.mp4',
 resolution=(1024, 1024))

mask is None by default. This is the same as all ones mask, then no keypoints will be excluded. Ignore it when you are sure that all the keypoints are valid.

	whether plot on backgrounds:

Maybe you want to use numpy input backgrounds.

E.g., you want to visualize you coco_wholebody kp2d as smpl convention. You have 2d coco_wholebody keypoints of shape(10, 133, 2).

from mmhuman3d.core.conventions.keypoints_mapping import convert_kps
from mmhuman3d.core.visualization.visualize_keypoints2d import visualize_kp2d

background = np.random.randint(low=0, high=255, shape=(10, 1024, 1024, 4))
multi_person, shape is (num_person, num_joints, 2)
out_image = visualize_kp2d(
 kp2d=kp2d, image_array=background, data_source='coco_wholebody', return_array=True)

This is just an example, you can use this function flexibly.

If want to plot keypoints on frame files, you could provide frame_list(list of image path). Be aware that the order of the frame will be sorted by name.
or origin_frames(mp4 path or image folder path), Be aware that you should provide the correct img_format for ffmpeg to read the images..

frame_list = ['im1.png', 'im2.png', ...]
visualize_kp2d(
 kp2d_coco_wholebody,
 data_source='coco_wholebody',
 output_path='some_video.mp4',
 resolution=(1024, 1024),
 frame_list=frame_list)

origin_frames = 'some_folder'
visualize_kp2d(
 kp2d_coco_wholebody,
 data_source='coco_wholebody',
 output_path='some_video.mp4',
 resolution=(1024, 1024),
 origin_frames=origin_frames)

origin_frames = 'some.mp4'
array = visualize_kp2d(
 kp2d_coco_wholebody,
 data_source='coco_wholebody',
 output_path='some_video.mp4',
 resolution=(1024, 1024),
 return_array=True,
 origin_frames=origin_frames)

The superiorty of background images: frame_list

	output a video or frames:

If output_path is a folder, this function will output frames.
If output_path is a ‘.mp4’ path, this function will output a video.
output_path could be set as None when return_array is True. The function will return an array of shape (frame, width, height, 3).

	whether plot origin file name on images:

Specify with_file_name=True then origin frame name will be plotted on the image.

	dataset not in existing convention or want to visualize some specific limbs:

You should provide limbs like
limbs=[[0, 1], ..., [10, 11]]
if you dataset is not in convention [https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/].

	other parameters:

Easy to understand, please read the doc strings in the function.

Visualize 3d keypoints

	simple example for visualize single person:

You have kp3d in smplx convention of shape (num_frame, 144, 3).

visualize_kp3d(kp3d=kp3d, data_source='smplx', output_path='some_video.mp4')

The result video would have one person dancing, each body part has its own color.

	simple example for visualize multi person:

You have kp3d_1 and kp3d_2 which are both in smplx convention of shape (num_frame, 144, 3).

kp3d = np.concatenate([kp3d_1[:, np.newaxis], kp3d_2[:, np.newaxis]], axis=1)
kp3d.shape is now (num_frame, num_person, 144, 3)
visualize_kp3d(kp3d=kp3d, data_source='smplx', output_path='some_video.mp4')

The result video would have two person dancing, each in a pure color, and the there will be a color legend describing the index of each person.

	data_source and mask:

The same as visualize_kp2d

	dataset not in existing convention or want to visualize some specific limbs:

The same as visualize_kp2d

	output:
If output_path is a folder, this function will output frames.
If output_path is a ‘.mp4’ path, this function will output a video.
output_path could be set as None when return_array is True. The function will return an array of shape (frame, width, height, 3).

	other parameters:

Easy to understand, please read the doc strings in the function.

About ffmpeg_utils

	In ffmpeg_utils [https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/utils/ffmpeg_utils.py] , each function has abundant doc strings, and the semantically defined function names could be easily understood.

	read files:

images_to_array, video_to_array

	write files:

array_to_images, array_to_video

	convert formats:

gif_to_images, gif_to_video, video_to_images, video_to_gif, images_to_gif, images_to_video

	temporally crop/concat:

slice_video, temporal_concat_video

	spatially crop/concat:

crop_video, spatial_concat_video

	compress:

compress_gif, compress_video

 Visualize SMPL Mesh

Visualize SMPL Mesh

	fast visualize smpl(x) pose without background images:

You have smpl pose tensor or array shape of which is (frame, 72)

from mmhuman3d.core.visualization.visualize_smpl import visualize_smpl_pose
body_model_config = dict(
 type='smpl', model_path=model_path)
visualize_smpl_pose(
 poses=poses,
 output_path='smpl.mp4',
 resolution=(1024, 1024))

Or you have smplx pose tensor or array shape of which is (frame, 165)

body_model_config = dict(
 type='smplx', model_path=model_path)
visualize_smpl_pose(
 poses=poses,
 body_model_config=body_model_config,
 output_path='smplx.mp4',
 resolution=(1024, 1024))

You could also feed dict tensor of smplx definitions. You could check that in visualize_smpl or original smplx [https://github.com/vchoutas/smplx/blob/master/smplx/body_models.py].

	visualize T-pose:
If you want to visualize a T-pose smpl or your poses do not have global_orient, you can do:

import torch
from mmhuman3d.core.visualization.visualize_smpl import visualize_T_pose
body_model_config = dict(
 type='smpl', model_path=model_path)
visualize_T_pose(
 num_frames=100,
 body_model_config=body_model_config,
 output_path='smpl_tpose.mp4',
 orbit_speed=(1, 0.5),
 resolution=(1024, 1024))

	visualize smpl with predicted VIBE camera:
You have poses (numpy/tensor) of shape (frame, 72), betas of shape (frame, 10), pred_cam of shape (10, 4).
E.g., we use vibe sample_video.mp4 as an example.

import pickle
from mmhuman3d.core.visualization.visualize_smpl import visualize_smpl_vibe
with open('vibe_output.pkl', 'rb') as f:
 d = pickle.load(f, encoding='latin1')
poses = d[1]['pose']
orig_cam = d[1]['orig_cam']
pred_cam = d[1]['pred_cam']
bbox = d[1]['bboxes']
gender = 'female'

pass pred_cam & bbox
body_model_config = dict(
 type='smpl', model_path=model_path, gender=gender)
visualize_smpl_vibe(
 poses=poses,
 betas=betas,
 body_model_config=body_model_config,
 pred_cam=pred_cam,
 bbox=bbox,
 output_path='vibe_demo.mp4',
 origin_frames='sample_video.mp4',
 resolution=(1024, 1024))

or pass orig_cam
body_model_config = dict(
 type='smpl', model_path=model_path, gender=gender)
visualize_smpl_vibe(
 poses=poses,
 betas=betas,
 body_model_config=body_model_config,
 orig_cam=orig_cam,
 output_path='vibe_demo.mp4',
 origin_frames='sample_video.mp4',
 resolution=(1024, 1024))

	visualize smpl with predicted HMR/SPIN camera:
You have poses (numpy/tensor) of shape (frame, 72), betas of shape (frame, 10), cam_translation of shape (10, 4).
E.g., we use vibe sample_video.mp4 as an example.

import pickle
from mmhuman3d.core.visualization.visualize_smpl import visualize_smpl_hmr
gender = 'female'
focal_length = 5000
det_width = 224
det_height = 224

you can pass smpl poses & betas & gender
body_model_config = dict(
 type='smpl', model_path=model_path, gender=gender)
visualize_smpl_hmr(
 poses=poses,
 betas=betas,
 bbox=bbox,
 body_model_config=body_model_config,
 focal_length=focal_length,
 det_width=det_width,
 det_height=det_height,
 T=cam_translation,
 output_path='hmr_demo.mp4',
 origin_frames=image_folder,
 resolution=(1024, 1024))

or you can pass verts
body_model_config = dict(
 type='smpl', model_path=model_path, gender=gender)
visualize_smpl_hmr(
 verts=verts,
 bbox=bbox,
 focal_length=focal_length,
 body_model_config=body_model_config,
 det_width=det_width,
 det_height=det_height,
 T=cam_translation,
 output_path='hmr_demo.mp4',
 origin_frames=image_folder,
 resolution=(1024, 1024))

you can also pass kp2d in replace of bbox.
body_model_config = dict(
 type='smpl', model_path=model_path, gender=gender)
visualize_smpl_hmr(
 verts=verts,
 body_model_config=body_model_config,
 kp2d=kp2d,
 focal_length=focal_length,
 det_width=det_width,
 det_height=det_height,
 T=cam_translation,
 output_path='hmr_demo.mp4',
 origin_frames=image_folder,
 resolution=(1024, 1024))

	visualize smpl with opencv camera:
You should pass the opencv defined intrinsic matrix K and extrinsic matrix R, T.

from mmhuman3d.core.visualization.visualize_smpl import visualize_smpl_calibration
body_model_config = dict(
 type='smpl', model_path=model_path, gender=gender)
visualize_smpl_calibration(
 poses=poses,
 betas=betas,
 transl=transl,
 body_model_config=body_model_config,
 K=K,
 R=R,
 T=T,
 output_path='opencv.mp4',
 origin_frames='bg_video.mp4',
 resolution=(1024, 1024))

Different render_choice:

	visualize mesh:
This is independent of cameras and you could directly set render_choice as hq(high quality), mq(medium quality) or lq(low quality).

	visualize binary silhouettes:
This is independent of cameras and you could directly set render_choice as silhouette. The output video/images will be binary masks.

	visualize body part silhouette:
This is independent of cameras and you could directly set render_choice as part_silhouette. The output video/images will be body part segmentation masks.

	visualize depth map:
This is independent of cameras and you could directly set render_choice as depth.
The output video/images will be gray depth maps.

	visualize normal map:
This is independent of cameras and you could directly set render_choice as normal.
The output video/images will be colorful normal maps.

	visualize point clouds:
This is independent of cameras and you could directly set render_choice as pointcloud.
The output video/images will be point clouds with keypoints.

	Choose your color:
Set palette as ‘white’, ‘black’, ‘blue’, ‘green’, ‘red’, ‘yellow’, and pass a list of string with the length of num_person.
Or send a numpy.ndarray of shape (num_person, 3). Should be normalized color: (1.0, 1.0, 1.0) represents white. The color channel is RGB.

	Differentiable render:
Set no_grad=False and return_tensor=True.

Important parameters:

	background images:
You could pass image_array(numpy.ndarray of shape (frame, h, w, 3)) or frame_list(list of paths of images(.png or .jpg)) or origin_frames(str of video path or image folder path). The priority order is image_array > frame_list > origin_frames.
If the background images are too big, you should set read_frames_batch as True to relieve the IO burden. This will be done automatically in the code when you number of frame is large than 500.

	smpl pose & verts:
There area two ways to pass smpl mesh information:
1). You pass poses, betas(optional) and transl(optional) and gender(optional).
2). You pass verts directly and the above three will be ignored. The body_model or model_path is still required if you passverts since we need to get the faces.
The priority order is verts > (poses & betas & transl & gender).
Check the docstring for details.
3). for multi-person, you should have an extra dim for num_person. E.g., shape of smpl verts should be (num_frame, num_person, 6890, 3), shape of smpl poses should be (num_frame, num_person, 72), shape of smpl betas should be (num_frame, num_person, 10), shape of vibe pred_cam should be (num_frame, num_person, 3). This doesn’t have influence on K, R, T since they are for every frame.

	body model:
There are two ways to pass body model:
1). You pass a dict body_model_config which containing the same configs as build_body_model
2). You pass body_model directly and the above three will be ignored.
The priority order is body_model > (model_path & model_type & gender).
Check the docstring for details.

	output path:
Output_path could be None or str of video path or str of image folder path.
1). If None, no output file will be wrote.
2). If a video path like xxx.mp4, a video file will be wrote. Make sure you have enough space for temporal images. The images will be removed automatically.
3). If a image folder path like xxx/, a folder will be created and the images will be wrote into it.

 Additional Licenses

Additional Licenses

We would like to pay tribute to open-source implementations to which we make reference. Note that they may carry additional license requiresments.

SMPLify-X

License

Software Copyright License for non-commercial scientific research purposes
Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use the SMPL-X/SMPLify-X model, data and software, (the “Model & Software”), including 3D meshes, blend weights, blend shapes, textures, software, scripts, and animations. By downloading and/or using the Model & Software (including downloading, cloning, installing, and any other use of this github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Model & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License

Ownership / Licensees
The Software and the associated materials has been developed at the

Max Planck Institute for Intelligent Systems (hereinafter “MPI”).

Any copyright or patent right is owned by and proprietary material of the

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (hereinafter “MPG”; MPI and MPG hereinafter collectively “Max-Planck”)

hereinafter the “Licensor”.

License Grant
Licensor grants you (Licensee) personally a single-user, non-exclusive, non-transferable, free of charge right:

To install the Model & Software on computers owned, leased or otherwise controlled by you and/or your organization;
To use the Model & Software for the sole purpose of performing non-commercial scientific research, non-commercial education, or non-commercial artistic projects;
Any other use, in particular any use for commercial, pornographic, military, or surveillance, purposes is prohibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or production of other artifacts for commercial purposes. The Data & Software may not be used to create fake, libelous, misleading, or defamatory content of any kind excluding analyses in peer-reviewed scientific research. The Data & Software may not be reproduced, modified and/or made available in any form to any third party without Max-Planck’s prior written permission.

The Data & Software may not be used for pornographic purposes or to generate pornographic material whether commercial or not. This license also prohibits the use of the Software to train methods/algorithms/neural networks/etc. for commercial, pornographic, military, surveillance, or defamatory use of any kind. By downloading the Data & Software, you agree not to reverse engineer it.

No Distribution
The Model & Software and the license herein granted shall not be copied, shared, distributed, re-sold, offered for re-sale, transferred or sub-licensed in whole or in part except that you may make one copy for archive purposes only.

Disclaimer of Representations and Warranties
You expressly acknowledge and agree that the Model & Software results from basic research, is provided “AS IS”, may contain errors, and that any use of the Model & Software is at your sole risk. LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE MODEL & SOFTWARE, NEITHER EXPRESS NOR IMPLIED, AND THE ABSENCE OF ANY LEGAL OR ACTUAL DEFECTS, WHETHER DISCOVERABLE OR NOT. Specifically, and not to limit the foregoing, licensor makes no representations or warranties (i) regarding the merchantability or fitness for a particular purpose of the Model & Software, (ii) that the use of the Model & Software will not infringe any patents, copyrights or other intellectual property rights of a third party, and (iii) that the use of the Model & Software will not cause any damage of any kind to you or a third party.

Limitation of Liability
Because this Model & Software License Agreement qualifies as a donation, according to Section 521 of the German Civil Code (Bürgerliches Gesetzbuch – BGB) Licensor as a donor is liable for intent and gross negligence only. If the Licensor fraudulently conceals a legal or material defect, they are obliged to compensate the Licensee for the resulting damage.
Licensor shall be liable for loss of data only up to the amount of typical recovery costs which would have arisen had proper and regular data backup measures been taken. For the avoidance of doubt Licensor shall be liable in accordance with the German Product Liability Act in the event of product liability. The foregoing applies also to Licensor’s legal representatives or assistants in performance. Any further liability shall be excluded.
Patent claims generated through the usage of the Model & Software cannot be directed towards the copyright holders.
The Model & Software is provided in the state of development the licensor defines. If modified or extended by Licensee, the Licensor makes no claims about the fitness of the Model & Software and is not responsible for any problems such modifications cause.

No Maintenance Services
You understand and agree that Licensor is under no obligation to provide either maintenance services, update services, notices of latent defects, or corrections of defects with regard to the Model & Software. Licensor nevertheless reserves the right to update, modify, or discontinue the Model & Software at any time.

Defects of the Model & Software must be notified in writing to the Licensor with a comprehensible description of the error symptoms. The notification of the defect should enable the reproduction of the error. The Licensee is encouraged to communicate any use, results, modification or publication.

Publications using the Model & Software
You acknowledge that the Model & Software is a valuable scientific resource and agree to appropriately reference the following paper in any publication making use of the Model & Software.

Citation:

@inproceedings{SMPL-X:2019,
title = {Expressive Body Capture: 3D Hands, Face, and Body from a Single Image},
author = {Pavlakos, Georgios and Choutas, Vasileios and Ghorbani, Nima and Bolkart, Timo and Osman, Ahmed A. A. and Tzionas, Dimitrios and Black, Michael J.},
booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
year = {2019}
}
Commercial licensing opportunities
For commercial uses of the Software, please send email to ps-license@tue.mpg.de

This Agreement shall be governed by the laws of the Federal Republic of Germany except for the UN Sales Convention.

VIBE

License

Software Copyright License for non-commercial scientific research purposes
Please read carefully the following terms and conditions and any accompanying documentation before you download
and/or use the VIBE model, data and software, (the “Model & Software”), including 3D meshes, software, and scripts.
By downloading and/or using the Model & Software (including downloading, cloning, installing, and any other use
of this github repository), you acknowledge that you have read these terms and conditions, understand them, and
agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use
the Model & Software. Any infringement of the terms of this agreement will automatically terminate your rights
under this License

Ownership / Licensees
The Software and the associated materials has been developed at the

Max Planck Institute for Intelligent Systems (hereinafter “MPI”).

Any copyright or patent right is owned by and proprietary material of the

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (hereinafter “MPG”; MPI and MPG hereinafter
collectively “Max-Planck”)

hereinafter the “Licensor”.

This software includes the SMPL Body Model. By downloading this software, you are agreeing to be bound by the terms of the SMPL Model License

 https://smpl.is.tue.mpg.de/modellicense

which is necessary to create SMPL body models.

SMPL bodies that are generated with VIBE can be distributed freely under the SMPL Body License

 https://smpl.is.tue.mpg.de/bodylicense

License Grant
Licensor grants you (Licensee) personally a single-user, non-exclusive, non-transferable, free of charge right:

To install the Model & Software on computers owned, leased or otherwise controlled by you and/or your organization;
To use the Model & Software for the sole purpose of performing non-commercial scientific research, non-commercial
education, or non-commercial artistic projects;
Any other use, in particular any use for commercial purposes, is prohibited. This includes, without limitation,
incorporation in a commercial product, use in a commercial service, or production of other artifacts for
commercial purposes. The Model & Software may not be reproduced, modified and/or made available in any form to
any third party without Max-Planck’s prior written permission.

The Model & Software may not be used for pornographic purposes or to generate pornographic material whether
commercial or not. This license also prohibits the use of the Model & Software to train methods/algorithms/neural
networks/etc. for commercial use of any kind. By downloading the Model & Software,
you agree not to reverse engineer it.

No Distribution
The Model & Software and the license herein granted shall not be copied, shared, distributed, re-sold, offered
for re-sale, transferred or sub-licensed in whole or in part except that you may make one copy for archive
purposes only.

Disclaimer of Representations and Warranties
You expressly acknowledge and agree that the Model & Software results from basic research, is provided “AS IS”,
may contain errors, and that any use of the Model & Software is at your sole risk. LICENSOR MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND CONCERNING THE MODEL & SOFTWARE, NEITHER EXPRESS NOR IMPLIED, AND THE ABSENCE OF ANY
LEGAL OR ACTUAL DEFECTS, WHETHER DISCOVERABLE OR NOT. Specifically, and not to limit the foregoing, licensor
makes no representations or warranties (i) regarding the merchantability or fitness for a particular purpose of
the Model & Software, (ii) that the use of the Model & Software will not infringe any patents, copyrights or other
intellectual property rights of a third party, and (iii) that the use of the Model & Software will not cause any
damage of any kind to you or a third party.

Limitation of Liability
Because this Model & Software License Agreement qualifies as a donation, according to Section 521 of the German
Civil Code (Bürgerliches Gesetzbuch – BGB) Licensor as a donor is liable for intent and gross negligence only.
If the Licensor fraudulently conceals a legal or material defect, they are obliged to compensate the Licensee
for the resulting damage.

Licensor shall be liable for loss of data only up to the amount of typical recovery costs which would have
arisen had proper and regular data backup measures been taken. For the avoidance of doubt Licensor shall be
liable in accordance with the German Product Liability Act in the event of product liability. The foregoing
applies also to Licensor’s legal representatives or assistants in performance. Any further liability shall be excluded.
Patent claims generated through the usage of the Model & Software cannot be directed towards the copyright holders.
The Model & Software is provided in the state of development the licensor defines. If modified or extended by
Licensee, the Licensor makes no claims about the fitness of the Model & Software and is not responsible
for any problems such modifications cause.

No Maintenance Services
You understand and agree that Licensor is under no obligation to provide either maintenance services,
update services, notices of latent defects, or corrections of defects with regard to the Model & Software.
Licensor nevertheless reserves the right to update, modify, or discontinue the Model & Software at any time.

Defects of the Model & Software must be notified in writing to the Licensor with a comprehensible description
of the error symptoms. The notification of the defect should enable the reproduction of the error.
The Licensee is encouraged to communicate any use, results, modification or publication.

Publications using the Model & Software
You acknowledge that the Model & Software is a valuable scientific resource and agree to appropriately reference
the following paper in any publication making use of the Model & Software.

Citation:

@inproceedings{VIBE:CVPR:2020,
title = {{VIBE}: Video Inference for Human Body Pose and Shape Estimation},
author = {Kocabas, Muhammed and Athanasiou, Nikos and Black, Michael J.},
booktitle = {Computer Vision and Pattern Recognition (CVPR)},
month = jun,
year = {2020},
month_numeric = {6}
}

Commercial licensing opportunities
For commercial uses of the Software, please send email to ps-license@tue.mpg.de

This Agreement shall be governed by the laws of the Federal Republic of Germany except for the UN Sales Convention.

SPIN

Copyright (c) 2019,
University of Pennsylvania,
Max Planck Institute for Intelligent Systems
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

PARE

License

Software Copyright License for non-commercial scientific research purposes
Please read carefully the following terms and conditions and any accompanying documentation before you download
and/or use the PARE model, data and software, (the “Model & Software”), including 3D meshes, software, and scripts.
By downloading and/or using the Model & Software (including downloading, cloning, installing, and any other use
of this github repository), you acknowledge that you have read these terms and conditions, understand them, and
agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use
the Model & Software. Any infringement of the terms of this agreement will automatically terminate your rights
under this License

Ownership / Licensees
The Model & Software and the associated materials has been developed at the

Max Planck Institute for Intelligent Systems (hereinafter “MPI”).

Any copyright or patent right is owned by and proprietary material of the

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (hereinafter “MPG”; MPI and MPG hereinafter
collectively “Max-Planck”)

hereinafter the “Licensor”.

This software includes the SMPL Body Model. By downloading this software, you are agreeing to be bound by the terms of the SMPL Model License

 https://smpl.is.tue.mpg.de/modellicense

which is necessary to create SMPL body models.

SMPL bodies that are generated with PARE can be distributed freely under the SMPL Body License

 https://smpl.is.tue.mpg.de/bodylicense

License Grant
Licensor grants you (Licensee) personally a single-user, non-exclusive, non-transferable, free of charge right:

To install the Model & Software on computers owned, leased or otherwise controlled by you and/or your organization;
To use the Model & Software for the sole purpose of performing non-commercial scientific research, non-commercial
education, or non-commercial artistic projects;
Any other use, in particular any use for commercial purposes, is prohibited. This includes, without limitation,
incorporation in a commercial product, use in a commercial service, or production of other artifacts for
commercial purposes. The Model & Software may not be reproduced, modified and/or made available in any form to
any third party without Max-Planck’s prior written permission.

The Model & Software may not be used for pornographic purposes or to generate pornographic material whether
commercial or not. This license also prohibits the use of the Model & Software to train methods/algorithms/neural
networks/etc. for commercial use of any kind. By downloading the Model & Software,
you agree not to reverse engineer it.

No Distribution
The Model & Software and the license herein granted shall not be copied, shared, distributed, re-sold, offered
for re-sale, transferred or sub-licensed in whole or in part except that you may make one copy for archive
purposes only.

Disclaimer of Representations and Warranties
You expressly acknowledge and agree that the Model & Software results from basic research, is provided “AS IS”,
may contain errors, and that any use of the Model & Software is at your sole risk. LICENSOR MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND CONCERNING THE MODEL & SOFTWARE, NEITHER EXPRESS NOR IMPLIED, AND THE ABSENCE OF ANY
LEGAL OR ACTUAL DEFECTS, WHETHER DISCOVERABLE OR NOT. Specifically, and not to limit the foregoing, licensor
makes no representations or warranties (i) regarding the merchantability or fitness for a particular purpose of
the Model & Software, (ii) that the use of the Model & Software will not infringe any patents, copyrights or other
intellectual property rights of a third party, and (iii) that the use of the Model & Software will not cause any
damage of any kind to you or a third party.

Limitation of Liability
Because this Model & Software License Agreement qualifies as a donation, according to Section 521 of the German
Civil Code (Bürgerliches Gesetzbuch – BGB) Licensor as a donor is liable for intent and gross negligence only.
If the Licensor fraudulently conceals a legal or material defect, they are obliged to compensate the Licensee
for the resulting damage.

Licensor shall be liable for loss of data only up to the amount of typical recovery costs which would have
arisen had proper and regular data backup measures been taken. For the avoidance of doubt Licensor shall be
liable in accordance with the German Product Liability Act in the event of product liability. The foregoing
applies also to Licensor’s legal representatives or assistants in performance. Any further liability shall be excluded.
Patent claims generated through the usage of the Model & Software cannot be directed towards the copyright holders.
The Model & Software is provided in the state of development the licensor defines. If modified or extended by
Licensee, the Licensor makes no claims about the fitness of the Model & Software and is not responsible
for any problems such modifications cause.

No Maintenance Services
You understand and agree that Licensor is under no obligation to provide either maintenance services,
update services, notices of latent defects, or corrections of defects with regard to the Model & Software.
Licensor nevertheless reserves the right to update, modify, or discontinue the Model & Software at any time.

Defects of the Model & Software must be notified in writing to the Licensor with a comprehensible description
of the error symptoms. The notification of the defect should enable the reproduction of the error.
The Licensee is encouraged to communicate any use, results, modification or publication.

Publications using the Model & Software
You acknowledge that the Model & Software is a valuable scientific resource and agree to appropriately reference
the following paper in any publication making use of the Model & Software.

Citation:

@inproceedings{Kocabas_PARE_2021,
title = {{PARE}: Part Attention Regressor for {3D} Human Body Estimation},
author = {Kocabas, Muhammed and Huang, Chun-Hao P. and Hilliges, Otmar and Black, Michael J.},
booktitle = {Proc. International Conference on Computer Vision (ICCV)},
pages = {11127–11137},
month = oct,
year = {2021},
doi = {},
month_numeric = {10}
}

Commercial licensing opportunities
For commercial uses of the Model & Software, please send email to ps-license@tue.mpg.de

This Agreement shall be governed by the laws of the Federal Republic of Germany except for the UN Sales Convention.

STAR

License

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
holder of all proprietary rights on this computer program.
You can only use this computer program if you have closed
a license agreement with MPG or you get the right to use the computer
program from someone who is authorized to grant you that right.
Any use of the computer program without a valid license is prohibited and
liable to prosecution.

Copyright©2019 Max-Planck-Gesellschaft zur Förderung
der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
for Intelligent Systems. All rights reserved.

Contact: ps-license@tuebingen.mpg.de

 mmhuman3d.apis

mmhuman3d.apis

mmhuman3d.core

cameras

conventions

evaluation

filter

optimizer

parametric_model

visualization

mmhuman3d.models

models

architectures

backbones

discriminators

necks

heads

losses

utils

mmhuman3d.data

data

datasets

data_converters

data_structures

mmhuman3d.utils

 Index

Index

 How to add a dataset converter to mmhuman3d

How to add a dataset converter to mmhuman3d

Overview

All datasets are first preprocessed (using respective converters) into the same convention before they are loaded during training or testing. This documentation outlines how to add a new converter to support a new dataset.

1. Create a python script for your converter

For this example, we create mmhuman3d/data/data_converters/lsp.py for the LSP dataset we are adding.

We have two types of converters that we inherit from:

(1) BaseConverter (refer to mmhuman3d/data/data_converters/coco.py for an example)

CocoConverter has a convert function to output a single preprocessed .npz file.

@DATA_CONVERTERS.register_module()
class CocoConverter(BaseConverter):

 def convert(self, dataset_path: str, out_path: str) -> dict:
 """
 Args:
 dataset_path (str): Path to directory where raw images and
 annotations are stored.
 out_path (str): Path to directory to save preprocessed npz file

 Returns:
 dict:
 A dict containing keys image_path, bbox_xywh, keypoints2d,
 keypoints2d_mask stored in HumanData() format
 """

(2) BaseModeConverter (refer to mmhuman3d/data/data_converters/lsp.py for an example)

If your dataset requires different handling (modes) for training and test set, you can inherit BaseModeConverter. For instance, LspConverter has a convert_by_mode function which outputs multiple preprocessed .npz file with different modes defined in ACCEPTED_MODES.

@DATA_CONVERTERS.register_module()
class LspConverter(BaseModeConverter):

 """
 Args:
 modes (list): 'test' and/or 'train' for accepted modes
 """
 ACCEPTED_MODES = ['test', 'train']

 def __init__(self, modes: List = []) -> None:
 super(LspConverter, self).__init__(modes)

 def convert_by_mode(self, dataset_path: str, out_path: str,
 mode: str) -> dict:

Please refer to keypoints conventions [https://github.com/open-mmlab/mmhuman3d/blob/main/docs/keypoints_convention.md] to see if your dataset has an existing convention. If not, you can define a new convention following this documentation [https://github.com/open-mmlab/mmhuman3d/blob/main/docs/customize_keypoints_convention.md].

store keypoints according to specified convention
keypoints2d_, mask = convert_kps(keypoints2d_, 'lsp', 'human_data')

Our data pipeline use HumanData structure for storing and loading. You can refer to further explanation of its functionalities here [https://github.com/open-mmlab/mmhuman3d/blob/main/docs/human_data.md].

 # use HumanData to store all data
 human_data = HumanData()

 ...

 # store the necessary keys i.e. image path, bbox, keypoints2d, keypoints2d_mask, keypoints3d, keypoints3d_mask
 human_data['image_path'] = image_path_
 human_data['bbox_xywh'] = bbox_xywh_
 human_data['keypoints2d_mask'] = mask
 human_data['keypoints2d'] = keypoints2d_
 human_data['config'] = 'lsp'
 human_data.compress_keypoints_by_mask()

 # store the data struct
 if not os.path.isdir(out_path):
 os.makedirs(out_path)

 out_file = os.path.join(out_path, 'lsp_{}.npz'.format(mode))
 human_data.dump(out_file)

2. Initialise your converter in mmhuman3d/data/data_converters/__init__.py

Add your converter to the registry of data_converters:

import your converter
from .lsp import LspConverter

add your converter to the list of converters
__all__ = [
 'build_data_converter', 'AgoraConverter', 'MpiiConverter', 'H36mConverter', ...
 'LspConverter'
]

3. Add your dataset configuration to DATASET-CONFIGS under mmhuman3d/tools/convert_datasets.py

The available dataset configurations are listed here [https://github.com/open-mmlab/mmhuman3d/tree/main/tools/convert_datasets.py].

An example is

DATASET_CONFIGS = dict(
 ...
 lsp=dict(type='LspConverter', modes=['train', 'test'], prefix='lsp')
)

where lsp is an example of a dataset-name. The available modes are train and test and the prefix specifies the name of the dataset folder. In this case, the prefix lsp is the name of the dataset folder containing the raw annotations and images (see example folder structure for LSP here [https://github.com/open-mmlab/mmhuman3d/blob/main/docs/preprocess_dataset.md#lsp]).

4. Add your dataset license and recommended folder structure to preprocess_dataset.md

Example of dataset citation in lsp.py:

	https://github.com/open-mmlab/mmhuman3d/blob/9ec38db89cb896c318ff830c12ec007f60c447ad/mmhuman3d/data/data_converters/lsp.py#L15-L22

Example of dataset citation, download link and folder structure in preprocess_dataset.md

	https://github.com/open-mmlab/mmhuman3d/blob/main/docs/preprocess_dataset.md#lsp

5. Check that the converter works

Check that running this command

python tools/convert_datasets.py \
 --datasets lsp \ # dataset-name defined in DATASET_CONFIGS
 --root_path data/datasets \
 --output_path data/preprocessed_datasets

would allow us to obtain the preprocessed npz files under data/preprocessed_datasets:

mmhuman3d
├── mmhuman3d
├── docs
├── tests
├── tools
├── configs
└── data
 ├── datasets
 └── preprocessed_datasets
 ├── lsp_train.npz
 └── lsp_test.npz

 Render Meshes

Render Meshes

Renderer Initialization

We follow Pytorch3D renderer. We initialize the renderer with rasterizer, shader and other settings. Ours is compatible with Pytorch3D renderer initializations, but more flexible and functional. E.g., you can initialize a renderer just like Pytorch3D by passing the rasterizer and shader modules, or you can pass setting dicts, or use default settings.
In mmhuman3d, we provide MeshRenderer, DepthRenderer, NormalRenderer, PointCloudRenderer, SegmentationRenderer, SilhouetteRenderer and UVRenderer. In these renderers, UVRenderer is special and please refer to the last chapter UVRenderer.

All of these renderers could be initialized by MMCV.Registry. It is convenient to store the renderers configs by dicts.

	comparison between pytorch3d and mmhuman3d:

initialized by Pytorch3D
import torch
from pytorch3d.renderer import MeshRenderer, RasterizationSettings
from pytorch3d.renderer.lighting import PointLights
from pytorch3d.renderer.cameras import FoVPerspectiveCameras

device = torch.device('cuda')
R, T = look_at_view_transform(dist=2.7, elev=0, azim=0)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)

lights = PointLights(
 device=device,
 ambient_color=((0.5, 0.5, 0.5),),
 diffuse_color=((0.3, 0.3, 0.3),),
 specular_color=((0.2, 0.2, 0.2),),
 direction=((0, 1, 0),),
)
raster_settings = RasterizationSettings(
 image_size=128,
 blur_radius=0.0,
 faces_per_pixel=1,
)
renderer = MeshRenderer(
 rasterizer=MeshRasterizer(
 cameras=cameras, raster_settings=raster_settings),
 shader=SoftPhongShader(device=device, cameras=cameras, lights=lights))

initialized by mmhuman3d
from mmhuman3d.core.renderer.torch3d_renderer.builder import MeshRenderer
rasterizer could be passed by nn.Module or dict
rasterizer = dict(
 image_size=128,
 blur_radius=0.0,
 faces_per_pixel=1,
)
lights could be passed by nn.Module or dict
lights = dict(type='point', ambient_color=((0.5, 0.5, 0.5),),
 diffuse_color=((0.3, 0.3, 0.3),),
 specular_color=((0.2, 0.2, 0.2),),
 direction=((0, 1, 0),),)

rasterizer could be passed by cameras or dict
cameras = dict(type='fovperspective', R=R, T=T, device=device)

shader could be passed by nn.Module or dict
shader = dict(type='SoftPhongShader')

These two methods are equal.

import torch.nn as nn
from mmhuman3d.core.renderer.torch3d_renderer.builder import MeshRenderer, build_renderer

renderer = MeshRenderer(shader=shader, device=device, rasterizer=rasterizer, resolution=resolution)
renderer = build_renderer(dict(type='mesh', device=device, shader=shader, rasterizer=rasterizer, resolution=resolution))

Use default raster and shader settings
renderer = build_renderer(dict(type='mesh', device=device, resolution=resolution))
assert isinstance(renderer.rasterizer, nn.Module)
assert isinstance(renderer.shader, nn.Module)

We provide tensor2rgba function for visualization, the returned tensor will be a colorful image for visualization.
This function is different for different renderers. E.g., the rendered tensor of DepthRenderer is shape of (N, H, W, 1) of depth, and we will repeat it as a (N, H, W, 4) image tensor. And the rendered tensor of SegmentationRenderer is shape of (N, H, W, C) LongTensor, and we will convert it as a (N, H, W, 4) colorful image tensor according to a colormap. The rendered tensor of NormalRenderer is a (N, H, W, 4), its range is [-1, 1] and the tensor2rgba will normalize it to [0, 1].

The operation is simple:

import torch
from mmhuman3d.core.renderer.torch3d_renderer.builder import build_renderer

renderer = build_renderer(dict(type='mesh', device=device, resolution=resolution))
rendered_tensor = renderer(meshes=meshes, cameras=cameras, lights=lights)
rendered_rgba = renderer.tensor2rgba(rendered_tensor)

Moreover, our renderer could set output settings and provide file I/O operations.
These writed images or videos are converted by the mentioned function tensor2rgba.

will write a video
renderer = build_renderer(dict(type='mesh', device=device, resolution=resolution, output_path='test.mp4'))
backgrounds = torch.Tensor(N, H, W, 3)
rendered_tensor = renderer(meshes=meshes, cameras=cameras, lights=lights, backgrounds=backgrounds)
renderer.export() # needed for a video

will write a folder of images
renderer = build_renderer(dict(type='mesh', device=device, resolution=resolution, output_path='test_folder', out_img_format='%06d.png'))
backgrounds = torch.Tensor(N, H, W, 3)
rendered_tensor = renderer(meshes=meshes, cameras=cameras, lights=lights, backgrounds=backgrounds)

Use render_runner

You could pass your data by render_runner to render a series batch of render. It will use a for loop to render the tensor by batch so you can render a long sequence of video without CUDA out of memory.

import torch
from mmhuman3d.core.renderer.torch3d_renderer import render_runner

render_data = dict(cameras=cameras, lights=lights, meshes=meshes, backgrounds=backgrounds)
no_grad=True for non-differentiable render
rendered_tensor = render_runner.render(renderer=renderer, output_path=output_path, resolution=resolution, batch_size=batch_size, device=device, no_grad=True, return_tensor=True, **render_data)

UVRenderer

Our UVRenderer is different from the above renderers. It is actually a smpl uv topology defined wrapper and sampler. It has two main utilities: wrapping vertex attributes to a map, sampling vertex attributes from a map.

Initialize

The UV information is stored in the smpl_uv.npz file.

uv_renderer = build_renderer(dict(type='uv', resolution=resolution, device=device, model_type='smpl', uv_param_path='data/body_models/smpl/smpl_uv.npz'))

warping

Warp a gray texture image to smpl_mesh.

import torch
from mmhuman3d.models.body_models.builder import build_body_model
from pytorch3d.structures import meshes
from mmhuman3d.core.renderer.torch3d_renderer.builder import build_renderer
body_model = build_body_model(dict(type='smpl', model_path=model_path)).to(device)
pose_dict = body_model.tensor2dict(torch.zeros(1, 72))
verts = body_model(**pose_dict)['vertices']
faces = body_model.faces_tensor[None]
smpl_mesh = Meshes(verts=verts, faces=faces)
texture_image = torch.ones(1, 512, 512, 3) * 0.5
smpl_mesh.textures = uv_renderer.warp_texture(texture_image=texture_image)

sampling

Sample vertex normal from a normal_map.

normal_map = torch.ones(1, 512, 512, 3)
vertex_normals = uv_renderer.vertex_resample(normal_map)
assert vertex_normals.shape == (1 ,6890, 3)
assert (vertex_normals == 1).all()

 SMC(SenseMoCap) File Format Description

SMC(SenseMoCap) File Format Description

SMC (SenseMoCap) is a file format designed with multi-camera multi-model support in mind. Each smc file is essentially a HDF5 database，made easy for cross-platform, cross-language support (h5py, H5Cpp).

Each SMC file contains one sequence of 4D human data, with multiple data modalities in the following structure.

	

*.smc (File)

	Attributes

	actor_id: actor id, int32 scalar

	action_id: action id, int32 scalar

	datetime_str: data collection time stamp, string (YYYY-MM-DD-hh-mm-ss)

	

	

	

	

	

	

Extrinsics (Dataset):

	A JSON String with N calibrated Kinects and M iPhone extrinsic parameters with

	Indexing cameras:

	Kinect Color Index: i*2, 0<=i<N

	Kinect Depth Index: i*2 + 1, 0<=i<N

	iPhone Index: N*2 + j, 0<=j<M

	Parameters:

	Extrinsic: cam2world transformation

	R: Rotation Matrix [3,3]

	T: Translation [3]

	Floor: floor parameter [4]

Kinect (Group)

	Attributes

	num_frame: Kinect: uint32 scalar

	num_device: Kinect: uint8 scalar

	depth_mode: Kinect depth mode, uint8 scalar, as specified in K4A SDK enum [https://microsoft.github.io/Azure-Kinect-Sensor-SDK/master/group___enumerations_ga3507ee60c1ffe1909096e2080dd2a05d.html]

	color_resolution: Kinect RGB color mode uint8 scalar, as specified in K4A SDKenum [https://microsoft.github.io/Azure-Kinect-Sensor-SDK/master/group___enumerations_gabc7cab5e5396130f97b8ab392443c7b8.html#gabc7cab5e5396130f97b8ab392443c7b8]

	

KinectID: (HDF5 Group), range from 0 to N, each stores data collect from Kinect camera

	

	

	

	

	

	

	

	

Calibration (HDF5 Group)

	

	

Color (HDF5 Group)

	Intrinsics (Dataset): K4A SDK factory calibrated intrinsic, float32, shape (15,)

	Resolution (Dataset): color camera resolution (width, height), uint16, shape (2,),

	MetricRadius (Dataset): metric radius from K4A SDK, float32 scalar

Depth (HDF5 Group)

	Intrinsics (Dataset): K4A SDK factory calibrated intrinsic, float32, shape (15,)

	Resolution (Dataset): color camera resolution (width, height), uint16, shape (2,),

	MetricRadius (Dataset): metric radius from K4A SDK, float32 scalar

Color (Group)

	Dataset with F(number of frames) color images

	RGBA Color image (byte array)

Depth (Group)

	Dataset with F(number of frames) depth images

	16 bit depth image: 2D uint16 array with Shape H*W (576, 640)

IR (Group)

	Dataset with F(number of frames) Infrared images

	16 bit IR image: 2D uint16 array with Shape H*W (576, 640)

Mask (Group)

	Dataset with F(number of frames) body mask images from frame difference

	8 bit body mask image: 2D uint8 array with Shape H*W (576, 640)

Mask_k4abt (Group)

	Dataset with F(number of frames) body mask images from K4A Body Tracking SDK

	8 bit body mask image: 2D uint8 array with Shape H*W (576, 640)

Skeleton_k4abt (Group)

	Dataset with F(number of frames) Skeleton data from K4A Body Tracking SDK

	JSON: as specified in K4A SDK

Background (Group)

	Background Images for matting. Available from v3 data

	Color : Same as Kinect Color

	Depth: Same as Kinect Depth

iPhone (Group)

	Attributes

	num_frame: number of iPhone frames, int32 scalar, close to number of Kinect frames * 2 + 4

	color_resolution: iPhone RGB resolution(width, height), int32, shape (2,)

	depth_resolution: iPhone Depth resolution (width, height), int32, shape (2,)

	

iPhoneID (Group)

	

	

	

	

	

Color (Group)

	Dataset with F(number of frames) color images

	RGBA Color image (byte array)

Depth (Group)

	Dataset with F(number of frames) depth images (from iPhone LiDAR)

	16 bit depth image: 2D uint16 array with Shape H*W (192, 256)

Confidence (Group)

	Dataset with F(number of frames) confidence maps

	8 bit confidence: 2D uint16 array with Shape H*W (192, 256)

Mask_ARKit (Group)

	Dataset with F(number of frames) body mask from Apple ARKit

	8 bit body mask: 2D uint16 array with Shape H*W (192, 256)

CameraInfo (Group)

	Dataset with F(number of frames) camera information

	JSON with camera intrinsics, timestamp etc

	

Keypoints3D (Group)

	Attributes

	num_frame: number of frames for 3D key points

	convention: convention for key points

	created_time: creation timestamp

	keypoints3d (Dataset): 3D key point computed from triangulate_optim

	Keypoints3d_mask (Dataset): corresponding mask

Keypoints2D

	Kinect (Group)

	

	iPhone (Group)

	

DeviceID (Group)

	DeviceID

	Length aligned with 3D Keypoints，reprojection from 3D Keypoints

DeviceID (Group)

	DeviceID

	Length aligned with 3D Keypoints，reprojection from 3D Keypoints

SMPL (Group)

	Attributes

	num_frame: SMPL frames

	created_time: creation timestamp

	global_orient (Dataset): Global Orientation: Nx3

	body_pose (Dataset): Body Pose: Nx23x3

	betas (Dataset): SMPL Betas: 1x10

	transl (Dataset): Global Translation: Nx3

	keypoints3d (Dataset): SMPL Keypoints: Nx3

Tutorial

Please first install MMHuman3D following the installation guide.
To read a .smc file, you may refer to the instructions below:

from mmhuman3d.data.data_structures.smc_reader import SMCReader

Initialize a smc reader
smc_reader = SMCReader('/path/to/pxxxxxx_axxxxxx.smc')

Get calibration
Kinect IDs: from 0 to 9
iPhone ID: 0; vertical: images are transformed from landscape to vertical
kinect_extrinsics = smc_reader.get_kinect_color_extrinsics(kinect_id=0)
iphone_extrinsics = smc_reader.get_iphone_extrinsics(iphone_id=0)

Get images
kinect_images = smc_reader.get_color(device='Kinect', device_id=0)
iphone_images = smc_reader.get_color(device='iPhone', device_id=0, vertical=True)

Get depth maps
kinect_depth = smc_reader.get_kinect_depth(device='Kinect', device_id=0)
iphone_depth = smc_reader.get_iphone_depth(device='iPhone', device_id=0)

Get 2D keypoints
iphone_keypoints2d = smc_reader.get_keypoints2d(device='Kinect', device_id=0)
iphone_keypoints2d = smc_reader.get_keypoints2d(device='iPhone', device_id=0, vertical=True)

Get 3D keypoints
keypoints3d = smc_reader.get_keypoints3d(device='Kinect', device_id=0)

Get SMPL
smpl = smc_reader.get_smpl(device='Kinect', device_id=0)

nav.xhtml

 Table of Contents

 		
 Welcome to MMHuman3D’s documentation!

 		
 Installation

 		
 Requirements

 		
 Prepare environment

 		
 Install MMHuman3D

 		
 A from-scratch setup script

 		
 Getting Started

 		
 Installation

 		
 Data Preparation

 		
 Body Model Preparation

 		
 Inference / Demo

 		
 Offline Demo

 		
 Online Demo

 		
 Evaluation

 		
 Evaluate with a single GPU / multiple GPUs

 		
 Evaluate with slurm

 		
 Training

 		
 Training with a single / multiple GPUs

 		
 Training with Slurm

 		
 More Tutorials

 		
 Benchmark and Model Zoo

 		
 Baselines

 		
 HMR

 		
 SPIN

 		
 VIBE

 		
 HybrIK

 		
 PARE

 		
 ExPose

 		
 PyMAF-X

 		
 HumanData

 		
 Overview

 		
 Key/Value definition

 		
 The keys and values supported by HumanData are described as below.

 		
 Key check in HumanData.

 		
 Value check in HumanData.

 		
 Data compression

 		
 Compression with mask

 		
 Compression for file

 		
 Compression by key

 		
 Data selection

 		
 Select by shape

 		
 Select temporal slice

 		
 To torch.Tensor

 		
 MultiHumanData

 		
 Data preparation

 		
 Overview

 		
 Datasets for supported algorithms

 		
 Folder structure

 		
 AGORA

 		
 AMASS

 		
 COCO

 		
 COCO-WholeBody

 		
 CrowdPose

 		
 EFT

 		
 GTA-Human

 		
 Human3.6M

 		
 Human3.6M Mosh

 		
 HybrIK

 		
 LSP

 		
 LSPET

 		
 MPI-INF-3DHP

 		
 MPII

 		
 PoseTrack18

 		
 Penn Action

 		
 PW3D

 		
 SPIN

 		
 SURREAL

 		
 VIBE

 		
 FreiHand

 		
 EHF

 		
 FFHQ

 		
 ExPose

 		
 Stirling

 		
 Keypoints convention

 		
 Overview

 		
 How to use

 		
 Converting between conventions

 		
 Converting with confidence

 		
 Supported Conventions

 		
 HUMANDATA

 		
 AGORA

 		
 COCO

 		
 COCO-WHOLEBODY

 		
 CrowdPose

 		
 Human3.6M

 		
 GTA-Human

 		
 HybrIK

 		
 LSP

 		
 MPI-INF-3DHP

 		
 MPII

 		
 PoseTrack18

 		
 OpenPose

 		
 PennAction

 		
 SMPL

 		
 SMPL-X

 		
 Customizing keypoint convention

 		
 Customize keypoints convention

 		
 Overview

 		
 Cameras

 		
 Camera Initialization

 		
 Camera Projection Matrixs

 		
 Camera Conventions

 		
 Some Conversion Functions

 		
 Some Compute Functions

 		
 Visualize Keypoints

 		
 Visualize 2d keypoints

 		
 Visualize 3d keypoints

 		
 About ffmpeg_utils

 		
 Visualize SMPL Mesh

 		
 Different render_choice:

 		
 Important parameters:

 		
 Additional Licenses

 		
 SMPLify-X

 		
 VIBE

 		
 SPIN

 		
 PARE

 		
 STAR

 		
 mmhuman3d.apis

 		
 mmhuman3d.core

 		
 cameras

 		
 conventions

 		
 evaluation

 		
 filter

 		
 optimizer

 		
 parametric_model

 		
 visualization

