
MMHuman3D
Release 0.11.0

MMHuman3D Authors

Jul 10, 2023

GET STARTED

1 Installation 1
1.1 Requirements . 1
1.2 Prepare environment . 1
1.3 Install MMHuman3D . 3
1.4 A from-scratch setup script . 4

2 Getting Started 7
2.1 Installation . 7
2.2 Data Preparation . 7
2.3 Body Model Preparation . 8
2.4 Inference / Demo . 8
2.5 Evaluation . 10
2.6 Training . 11
2.7 More Tutorials . 11

3 Benchmark and Model Zoo 13
3.1 Baselines . 13

4 HumanData 15
4.1 Overview . 15
4.2 Key/Value definition . 15
4.3 Data compression . 18
4.4 Data selection . 20
4.5 To torch.Tensor . 20

5 MultiHumanData 21

6 Data preparation 23
6.1 Overview . 24
6.2 Datasets for supported algorithms . 24
6.3 Folder structure . 30

7 Keypoints convention 51
7.1 Overview . 51
7.2 How to use . 51
7.3 Supported Conventions . 52

8 Customize keypoints convention 59
8.1 Overview . 59

9 Cameras 63

i

9.1 Camera Initialization . 63
9.2 Camera Projection Matrixs . 65
9.3 Camera Conventions . 66
9.4 Some Conversion Functions . 67
9.5 Some Compute Functions . 68

10 Visualize Keypoints 69
10.1 Visualize 2d keypoints . 69
10.2 Visualize 3d keypoints . 71
10.3 About ffmpeg_utils . 71

11 Visualize SMPL Mesh 73
11.1 Different render_choice: . 76
11.2 Important parameters: . 76

12 Additional Licenses 79
12.1 SMPLify-X . 79
12.2 VIBE . 80
12.3 SPIN . 82
12.4 PARE . 83
12.5 STAR . 84

13 mmhuman3d.apis 85

14 mmhuman3d.core 87
14.1 cameras . 87
14.2 conventions . 87
14.3 evaluation . 87
14.4 filter . 87
14.5 optimizer . 87
14.6 parametric_model . 87
14.7 visualization . 87

15 mmhuman3d.models 89
15.1 models . 89
15.2 architectures . 89
15.3 backbones . 89
15.4 discriminators . 89
15.5 necks . 89
15.6 heads . 89
15.7 losses . 89
15.8 utils . 89

16 mmhuman3d.data 91
16.1 data . 91
16.2 datasets . 91
16.3 data_converters . 91
16.4 data_structures . 91

17 mmhuman3d.utils 93

18 Indices and tables 95

ii

CHAPTER

ONE

INSTALLATION

• Requirements

• Prepare environment

• Install MMHuman3D

• A from-scratch setup script

1.1 Requirements

• Linux

• ffmpeg

• Python 3.7+

• PyTorch 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.8.1, 1.9.0 or 1.9.1.

• CUDA 9.2+

• GCC 5+

• PyTorch3D 0.4+

• MMCV (Please install mmcv-full>=1.3.17,<1.6.0 for GPU)

Optional:

• MMPOSE (Only for demo.)

• MMDETECTION (Only for demo.)

• MMTRACKING (Only for multi-person demo. If you use mmtrack, please install mmcls<0.23.1, mmcv-
full>=1.3.17,<1.6.0 for GPU.)

1.2 Prepare environment

a. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab

b. Install ffmpeg

Install ffmpeg with conda directly and the libx264 will be built automatically.

1

https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmpose
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmtracking

MMHuman3D, Release 0.11.0

conda install ffmpeg

c. Install PyTorch and torchvision following the official instructions.

conda install pytorch={torch_version} torchvision cudatoolkit={cu_version} -c pytorch

E.g., install PyTorch 1.8.0 & CUDA 10.2.

conda install pytorch=1.8.0 torchvision cudatoolkit=10.2 -c pytorch

Important: Make sure that your compilation CUDA version and runtime CUDA version match. Besides, for RTX 30
series GPU, cudatoolkit>=11.0 is required.

d. Install PyTorch3D from source.

For Linux:

conda install -c fvcore -c iopath -c conda-forge fvcore iopath -y
conda install -c bottler nvidiacub -y

conda install pytorch3d -c pytorch3d

Users may also refer to PyTorch3D-install for more details. However, our recent tests show that installing using conda
sometimes runs into dependency conflicts. Hence, users may alternatively install Pytorch3D from source following the
steps below.

git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d
pip install .
cd ..

For Windows:

Please refer to official installation for details. Here we provide an example for user reference. Important: This section
is for users who want to install MMHuman3D on Windows.

Your installation is successful if you can do these in command line.

echo "import pytorch3d;print(pytorch3d.__version__); \
from pytorch3d.renderer import MeshRenderer;print(MeshRenderer);\
from pytorch3d.structures import Meshes;print(Meshes);\
from pytorch3d.renderer import cameras;print(cameras);\
from pytorch3d.transforms import Transform3d;print(Transform3d);"|python

echo "import torch;device=torch.device('cuda');\
from pytorch3d.utils import torus;\
Torus = torus(r=10, R=20, sides=100, rings=100, device=device);\
print(Torus.verts_padded());"|python

2 Chapter 1. Installation

https://pytorch.org/
https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md
https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md
https://github.com/open-mmlab/mmhuman3d/pull/199#issue-1274739041

MMHuman3D, Release 0.11.0

1.3 Install MMHuman3D

a. Build mmcv-full & mmpose & mmdet & mmtrack

• mmcv-full

We recommend you to install the pre-build package as below.

For CPU:

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cpu/{torch_version}/
→˓index.html

Please replace {torch_version} in the url to your desired one.

For GPU:

pip install "mmcv-full>=1.3.17,<=1.5.3" -f https://download.openmmlab.com/mmcv/dist/{cu_
→˓version}/{torch_version}/index.html

Please replace {cu_version} and {torch_version} in the url to your desired one.

For example, to install mmcv-full with CUDA 10.2 and PyTorch 1.8.0, use the following command:

pip install "mmcv-full>=1.3.17,<=1.5.3" -f https://download.openmmlab.com/mmcv/dist/
→˓cu102/torch1.8.0/index.html

See here for different versions of MMCV compatible to different PyTorch and CUDA versions. For more version
download link, refer to openmmlab-download.

Optionally you can choose to compile mmcv from source by the following command

git clone https://github.com/open-mmlab/mmcv.git -b v1.5.3
cd mmcv
MMCV_WITH_OPS=1 pip install -e . # package mmcv-full, which contains cuda ops, will be␣
→˓installed after this step
OR pip install -e . # package mmcv, which contains no cuda ops, will be installed␣
→˓after this step
cd ..

Important: You need to run pip uninstall mmcv first if you have mmcv installed. If mmcv and mmcv-full are both
installed, there will be ModuleNotFoundError.

• mmdetection (optional)

pip install "mmdet<=2.25.1"

Alternatively, you can also build MMDetection from source in case you want to modify the code:

git clone https://github.com/open-mmlab/mmdetection.git -b v2.25.1
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .

• mmpose (optional)

pip install "mmpose<=0.28.1"

1.3. Install MMHuman3D 3

https://mmcv.readthedocs.io/en/latest/get_started/installation.html
https://download.openmmlab.com/mmcv/dist/index.html

MMHuman3D, Release 0.11.0

Alternatively, you can also build MMPose from source in case you want to modify the code:

git clone https://github.com/open-mmlab/mmpose.git -b v0.28.1
cd mmpose
pip install -r requirements.txt
pip install -v -e .

• mmtracking (optional)

pip install "mmcls<=0.23.2" "mmtrack<=0.13.0"

Alternatively, you can also build MMTracking from source in case you want to modify the code:

git clone https://github.com/open-mmlab/mmtracking.git -b v0.13.0
cd mmtracking
pip install -r requirements/build.txt
pip install -v -e . # or "python setup.py develop"

b. Clone the mmhuman3d repository.

git clone https://github.com/open-mmlab/mmhuman3d.git
cd mmhuman3d

c. Install build requirements and then install mmhuman3d.

pip install -v -e . # or "python setup.py develop"

1.4 A from-scratch setup script

Create conda environment
conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab

Install ffmpeg
conda install ffmpeg

Install PyTorch
conda install pytorch==1.8.0 torchvision cudatoolkit=10.2 -c pytorch -y

Install PyTorch3D
conda install -c fvcore -c iopath -c conda-forge fvcore iopath -y
conda install -c bottler nvidiacub -y
conda install pytorch3d -c pytorch3d -y
Alternatively from source in case of dependency conflicts
git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d
pip install .
cd ..

Install mmcv-full
pip install "mmcv-full>=1.3.17,<1.6.0" -f https://download.openmmlab.com/mmcv/dist/cu102/
→˓torch1.8.0/index.html

(continues on next page)

4 Chapter 1. Installation

MMHuman3D, Release 0.11.0

(continued from previous page)

Optional: install mmdetection & mmpose & mmtracking
pip install "mmdet<=2.25.1"
pip install "mmpose<=0.28.1"
pip install "mmcls<=0.23.2" "mmtrack<=0.13.0"

Install mmhuman3d
git clone https://github.com/open-mmlab/mmhuman3d.git
cd mmhuman3d
pip install -v -e .

1.4. A from-scratch setup script 5

MMHuman3D, Release 0.11.0

6 Chapter 1. Installation

CHAPTER

TWO

GETTING STARTED

• Getting Started

– Installation

– Data Preparation

– Body Model Preparation

– Inference / Demo

∗ Offline Demo

∗ Online Demo

– Evaluation

∗ Evaluate with a single GPU / multiple GPUs

∗ Evaluate with slurm

– Training

∗ Training with a single / multiple GPUs

∗ Training with Slurm

– More Tutorials

2.1 Installation

Please refer to install.md for installation.

2.2 Data Preparation

Please refer to data_preparation.md for data preparation.

7

MMHuman3D, Release 0.11.0

2.3 Body Model Preparation

• SMPL v1.0 is used in our experiments.

– Neutral model can be downloaded from SMPLify.

– All body models have to be renamed in SMPL_{GENDER}.pkl format. For example, mv
basicModel_neutral_lbs_10_207_0_v1.0.0.pkl SMPL_NEUTRAL.pkl

• J_regressor_extra.npy

• J_regressor_h36m.npy

• smpl_mean_params.npz

Download the above resources and arrange them in the following file structure:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

body_models
J_regressor_extra.npy
J_regressor_h36m.npy
smpl_mean_params.npz
smpl

SMPL_FEMALE.pkl
SMPL_MALE.pkl
SMPL_NEUTRAL.pkl

2.4 Inference / Demo

2.4.1 Offline Demo

We provide a demo script to estimate SMPL parameters for single-person or multi-person from the input image or video
with the bounding box detected by MMDetection or MMTracking. With this demo script, you only need to choose a
pre-trained model (we currently only support HMR, SPIN, VIBE and PARE, more SOTA methods will be added in the
future) from our model zoo and specify a few arguments, and then you can get the estimated results.

Some useful configs are explained here:

• If you specify --output and --show_path, the demo script will save the estimated results into human_data
and render the estimated human mesh.

• If you specify --smooth_type, the demo will be smoothed using specific method. We now support filters
gaus1d,oneeuro, savgol and learning-based method smoothnet, more information can be find here.

• If you specify --speed_up_type, the demo will be processed more quickly using specific method. We now
support learning-based method deciwatch, more information can be find here.

For single-person:

8 Chapter 2. Getting Started

https://smpl.is.tue.mpg.de/
https://smplify.is.tue.mpg.de/
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/J_regressor_extra.npy?versionId=CAEQHhiBgIDD6c3V6xciIGIwZDEzYWI5NTBlOTRkODU4OTE1M2Y4YTI0NTVlZGM1
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/J_regressor_h36m.npy?versionId=CAEQHhiBgIDE6c3V6xciIDdjYzE3MzQ4MmU4MzQyNmRiZDA5YTg2YTI5YWFkNjRi
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/smpl_mean_params.npz?versionId=CAEQHhiBgICN6M3V6xciIDU1MzUzNjZjZGNiOTQ3OWJiZTJmNThiZmY4NmMxMTM4
https://github.com/open-mmlab/mmhuman3d/tree/main/configs/hmr/
https://github.com/open-mmlab/mmhuman3d/tree/main/configs/spin/
https://github.com/open-mmlab/mmhuman3d/tree/main/configs/vibe/
https://github.com/open-mmlab/mmhuman3d/tree/main/configs/pare/

MMHuman3D, Release 0.11.0

python demo/estimate_smpl.py \
${MMHUMAN3D_CONFIG_FILE} \
${MMHUMAN3D_CHECKPOINT_FILE} \
--single_person_demo \
--det_config ${MMDET_CONFIG_FILE} \
--det_checkpoint ${MMDET_CHECKPOINT_FILE} \
--input_path ${VIDEO_PATH_OR_IMG_PATH} \
[--show_path ${VIS_OUT_PATH}] \
[--output ${RESULT_OUT_PATH}] \
[--smooth_type ${SMOOTH_TYPE}] \
[--speed_up_type ${SPEED_UP_TYPE}] \
[--draw_bbox] \

Example:

python demo/estimate_smpl.py \
configs/hmr/resnet50_hmr_pw3d.py \
data/checkpoints/resnet50_hmr_pw3d.pth \
--single_person_demo \
--det_config demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
--det_checkpoint https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_

→˓rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--input_path demo/resources/single_person_demo.mp4 \
--show_path vis_results/single_person_demo.mp4 \
--output demo_result \
--smooth_type savgol \
--speed_up_type deciwatch \
--draw_bbox

For multi-person:

python demo/estimate_smpl.py \
${MMHUMAN3D_CONFIG_FILE} \
${MMHUMAN3D_CHECKPOINT_FILE} \
--multi_person_demo \
--tracking_config ${MMTRACKING_CONFIG_FILE} \
--input_path ${VIDEO_PATH_OR_IMG_PATH} \
[--show_path ${VIS_OUT_PATH}] \
[--output ${RESULT_OUT_PATH}] \
[--smooth_type ${SMOOTH_TYPE}] \
[--speed_up_type ${SPEED_UP_TYPE}] \
[--draw_bbox]

Example:

python demo/estimate_smpl.py \
configs/hmr/resnet50_hmr_pw3d.py \
data/checkpoints/resnet50_hmr_pw3d.pth \
--multi_person_demo \
--tracking_config demo/mmtracking_cfg/deepsort_faster-rcnn_fpn_4e_mot17-private-half.

→˓py \
--input_path demo/resources/multi_person_demo.mp4 \
--show_path vis_results/multi_person_demo.mp4 \

(continues on next page)

2.4. Inference / Demo 9

MMHuman3D, Release 0.11.0

(continued from previous page)

--smooth_type savgol \
--speed_up_type deciwatch \
[--draw_bbox]

Note that the MMHuman3D checkpoints can be downloaded from the model zoo. Here we take HMR
(resnet50_hmr_pw3d.pth) as an example.

2.4.2 Online Demo

We provide a webcam demo script to estimate SMPL parameters from the camera or a specified video file. You can
simply run the following command:

python demo/webcam_demo.py

Some useful arguments are explained here:

• If you specify --output, the webcam demo script will save the visualization results into a file. This may reduce
the frame rate.

• If you specify --synchronous, video I/O and inference will be temporally aligned. Note that this will reduce
the frame rate.

• If you want run the webcam demo in offline mode on a video file, you should set --cam-id=VIDEO_FILE_PATH.
Note that --synchronous should be set to True in this case.

• The video I/O and model inference are running asynchronously and the latter usually takes more time for a single
frame. To allevidate the time delay, you can:

– set --display-delay=MILLISECONDS to defer the video stream, according to the inference delay shown
at the top left corner. Or,

– set --synchronous=True to force video stream being aligned with inference results. This may reduce the
frame rate.

2.5 Evaluation

We provide pretrained models in the respective method folders in config.

2.5.1 Evaluate with a single GPU / multiple GPUs

python tools/test.py ${CONFIG} --work-dir=${WORK_DIR} ${CHECKPOINT} --metrics=${METRICS}

Example:

python tools/test.py configs/hmr/resnet50_hmr_pw3d.py --work-dir=work_dirs/hmr work_dirs/
→˓hmr/latest.pth --metrics pa-mpjpe mpjpe

10 Chapter 2. Getting Started

https://github.com/open-mmlab/mmhuman3d/tree/main/configs

MMHuman3D, Release 0.11.0

2.5.2 Evaluate with slurm

If you can run MMHuman3D on a cluster managed with slurm, you can use the script slurm_test.sh.

./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG} ${WORK_DIR} ${CHECKPOINT} --
→˓metrics ${METRICS}

Example:

./tools/slurm_test.sh my_partition test_hmr configs/hmr/resnet50_hmr_pw3d.py work_dirs/
→˓hmr work_dirs/hmr/latest.pth 8 --metrics pa-mpjpe mpjpe

2.6 Training

2.6.1 Training with a single / multiple GPUs

python tools/train.py ${CONFIG_FILE} ${WORK_DIR} --no-validate

Example: using 1 GPU to train HMR.

python tools/train.py ${CONFIG_FILE} ${WORK_DIR} --gpus 1 --no-validate

2.6.2 Training with Slurm

If you can run MMHuman3D on a cluster managed with slurm, you can use the script slurm_train.sh.

./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} ${GPU_NUM} --
→˓no-validate

Common optional arguments include:

• --resume-from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file.

• --no-validate: Whether not to evaluate the checkpoint during training.

Example: using 8 GPUs to train HMR on a slurm cluster.

./tools/slurm_train.sh my_partition my_job configs/hmr/resnet50_hmr_pw3d.py work_dirs/
→˓hmr 8 --no-validate

You can check slurm_train.sh for full arguments and environment variables.

2.7 More Tutorials

• Camera conventions

• Keypoint conventions

• Custom keypoint conventions

• HumanData

• Keypoint visualization

2.6. Training 11

https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://github.com/open-mmlab/mmhuman3d/tree/main/tools/slurm_train.sh

MMHuman3D, Release 0.11.0

• Mesh visualization

12 Chapter 2. Getting Started

CHAPTER

THREE

BENCHMARK AND MODEL ZOO

We provide configuration files, log files and pretrained models for all supported methods. Moreover, all pretrain models
are evaluated on three common benchmarks: 3DPW, Human3.6M, and MPI-INF-3DHP.

3.1 Baselines

3.1.1 HMR

Please refer to HMR for details.

3.1.2 SPIN

Please refer to SPIN for details.

3.1.3 VIBE

Please refer to VIBE for details.

3.1.4 HybrIK

Please refer to HybrIK for details.

3.1.5 PARE

Please refer to PARE for details.

3.1.6 ExPose

Please refer to ExPose for details.

13

https://github.com/open-mmlab/mmhuman3d/tree/main/configs/hmr/
https://github.com/open-mmlab/mmhuman3d/tree/main/configs/spin/
https://github.com/open-mmlab/mmhuman3d/tree/main/configs/vibe/
https://github.com/open-mmlab/mmhuman3d/tree/main/configs/hybrik/
https://github.com/open-mmlab/mmhuman3d/tree/main/configs/pare/
https://github.com/open-mmlab/mmhuman3d/tree/main/configs/expose/

MMHuman3D, Release 0.11.0

3.1.7 PyMAF-X

Please refer to PyMAF-X for details.

14 Chapter 3. Benchmark and Model Zoo

https://github.com/open-mmlab/mmhuman3d/tree/main/configs/pymafx/

CHAPTER

FOUR

HUMANDATA

4.1 Overview

HumanData is a subclass of python built-in class dict, containing single-view, image-based data for a human being. It
has a well-defined base structure for universal data, but it is also compatible with customized data for new features. A
native HumanData contains values in numpy.ndarray or python built-in types, it holds no data in torch.Tensor, but you
can convert arrays to torch.Tensor(even to GPU Tensor) by human_data.to() easily.

4.2 Key/Value definition

4.2.1 Paths:

Image path is included, and optionally path of segmentation map and depth image can be included if provided by
dataset.

• image_path: (N,), list of str, each element is a relative path from the root folder (exclusive) to the image.

• segmentation (optional): (N,), list of str, each element is a relative path from the root folder (exclusive) to the
segmentation map.

• depth_path (optional): (N,), list of str, each element is a relative path from the root folder (exclusive) to the depth
image.

4.2.2 Keypoints

Following keys should be included in HumanData if applicable. For each dictionary key of keypointsa corresponding
dictionart key of mask should be includedstating which keypoint is valid. For example keypoints3d_original
should correspond to keypoints3d_original_mask.

In HumanData, keypoints are stored as HUMAN_DATA format, which includes 190 joints. We provide keypoints format
(for both 2d and 3d keypoints) convention for many datasets, please see keypoints_convention.

• keypoints3d_smpl / keypoints3d_smplx: (N, 190, 4), numpy array, smplx / smplx 3d joints with confidence,
joints from each datasets are mapped to HUMAN_DATA joints.

• keypoints3d_original: (N, 190, 4), numpy array, 3d joints with confidence which provided by the dataset origi-
nally, joints from each datasets are mapped to HUMAN_DATA joints.

• keypoints2d_smpl / keypoints2d_smplx: (N, 190, 3), numpy array, smpl / smplx 2d joints with confidence,
joints from each datasets are mapped to HUMAN_DATA joints.

15

MMHuman3D, Release 0.11.0

• keypoints2d_original: (N, 190, 3), numpy array, 2d joints with confidence which provided by the dataset origi-
nally, joints from each datasets are mapped to HUMAN_DATA joints.

• (mask sample) keypoints2d_smpl_mask: (190,), numpy array, mask for which keypoint is valid in
keypoints2d_smpl. 0 means that the joint in this position cannot be found in original dataset.

4.2.3 Bounding Box

Bounding box of body (smpl), face and hand (smplx), which data type is [x_min, y_min, width, height,
confidence]and should not exceed the image boundary.

• bbox_xywh: (N, 5), numpy array, bounding box with confidence, coordinates of bottom-left point x, y, width w
and height h of bbox, score at last.

• face_bbox_xywh, lhand_bbox_xywh, rhand_bbox_xywh (optional): (N, 5), numpy array, should be included if
smplx data is provided, and is derived from smplx2d keypoints. Have the same srtucture as above.

4.2.4 Human Pose and Shape Parameters

Normally saved as smpl/smplx.

• smpl: (1,), dict, keys are ['body_pose': numpy array, (N, 23, 3), 'global_orient': numpy
array, (N, 3), 'betas': numpy array, (N, 10), 'transl': numpy array, (N, 3)].

• smplx: (1,), dict, keys are ['body_pose': numpy array, (N, 21, 3),'global_orient':
numpy array, (N, 3), 'betas': numpy array, (N, 10), 'transl': numpy array, (N,
3), 'left_hand_pose': numpy array, (N, 15, 3), 'right_hand_pose': numpy array,
(N, 15, 3), 'expression': numpy array (N, 10), 'leye_pose': numpy array (N, 3),
'reye_pose': (N, 3), 'jaw_pose': numpy array (N, 3)].

4.2.5 Other keys

• config: (), str, the flag name of config for individual dataset.

• meta: (1,), dict, its keys are meta data from dataset like ‘gender’.

• misc: (1,), dict, keys and values are designed to describe the different settings for each dataset. Can also be
defined by user. The space misc takes (sys.getsizeof(misc)) shall be no more than 6MB.

4.2.6 Suggestion for WHAT to include in HumanData['misc']:

Miscellaneous contains the info of different settings for each dataset, including camaera type, source of keypoints
annotation, bounding box etc. Aims to faclitate different usage of data. HumanData['misc'] is a dictionary and its
keys are described as following:

• kps3d_root_aligned Bool, stating that if keypoints3d is root-alignedroot_alignment is not preferred for Human-
Data. If this key does not exist, root_aligenment is by default to be False.

• flat_hand_meanBool, applicable for smplx datafor most datasets flat_hand_mean=False.

• bbox_sourcesource of bounding boxbbox_soruce='keypoints2d_smpl' or 'keypoints2d_smplx' or
'keypoints2d_original'describing which type of keypoints are used to derive the bounding boxOR
bbox_source='provide_by_dataset' shows that bounding box if provided by dataset. (For example, from
some detection module rather than keypoints)

16 Chapter 4. HumanData

MMHuman3D, Release 0.11.0

• bbox_body_scale: applicable if bounding box is derived by keypointsstating the zoom-in scale of bounding scale
from smpl/smplx/2d_gt keypointswe suggest bbox_body_scale=1.2.

• bbox_hand_scale, bbox_face_scale: applicable if bounding box is derived by smplx keypointsstating
the zoom-in scale of bounding scale from smplx/2d_gt keypointswe suggest bbox_hand_scale=1.0,
bbox_face_scale=1.0

• smpl_source / smplx_source: describing the source of smpl/smplx annotations'original',
'nerual_annot', 'eft', 'osx_annot', 'cliff_annot'.

• cam_param_type: describing the type of camera parameterscam_param_type='prespective' or
'predicted_camera' or 'eft_camera'

• principal_point, focal_length: (1, 2), numpy arrayapplicable if camera parameters are same across the whole
dataset, which is the case for some synthetic datasets.

• image_shape: (1, 2), numpy arrayapplicable if image shape are same across the whole dataset.

4.2.7 Suggestion for WHAT to include in HumanData['meta']:

• gender: (N,), list of str, each element represents the gender for an smpl/smplx instance. (key not required if
dataset use gender-neutral model)

• height (width)(N,) list of str, each element represents the height (width) of an image, image_shape=(width,
height): (N, 2) is not suggested as width and height might need to be referenced in different orders. (keys
should be in HumanData['misc'] if image shape are same across the dataset)

• other keysapplicable if the key value is differentand have some impact on keypoints or smpl/smplx (2d and 3d)For
example, focal_length and principal_point, focal_length = (N, 2), principal_point = (N, 2)

4.2.8 Some other info of HumanData

• All annotations are transformed from world space to opencv camera space, for space transformation we use:

from mmhuman3d.models.body_models.utils import transform_to_camera_frame,
batch_transform_to_camera_frame

4.2.9 Key check in HumanData.

Only keys above are allowed as top level key in a default HumanData. If you cannot work with that, there’s also a way
out. Construct a HumanData instance with __key_strict__ == False:

human_data = HumanData.new(key_strict=False)
human_data['video_path'] = 'test.mp4'

The returned human_data will allow any customized keys, logging a warning at the first time HumanData sees a new
key. Just ignore the warning if you do know that you are using a customized key, it will not appear again before the
program ends.

If you have already constructed a HumanData, and you want to change the strict mode, use set_key_strict:

human_data = HumanData.fromfile('human_data.npz')
key_strict = human_data.get_key_strict()
human_data.set_key_strict(not key_strict)

4.2. Key/Value definition 17

MMHuman3D, Release 0.11.0

4.2.10 Value check in HumanData.

Only values above will be check when human_data[key] == value is called, and the constraints are defined in
HumanData.SUPPORTED_KEYS.

For each value, an exclusive type must be specified under its key:

'smpl': {
'type': dict,

},

For value as numpy.ndarray, shape and dim shall be defined:

'keypoints3d': {
'type': np.ndarray,
'shape': (-1, -1, 4),
value.ndim==3, and value.shape[2]==4
value.shape[0:2] is arbitrary.
'dim': 0
dimension 0 marks time(frame index, or second)

},

For value which is constant along frame axis, set dim to -1 to ignore frame check:

'keypoints3d_mask': {
'type': np.ndarray,
'shape': (-1,),
'dim': -1

},

4.3 Data compression

4.3.1 Compression with mask

As the keypoint convention named HUMAN_DATA is a union of keypoint definitions from various datasets, it is
common that some keypoints are missing. In this situation, the missing ones are filtered by mask:

keypoints2d_agora is a numpy array in shape [frame_num, 127, 3].
There are 127 keypoints defined by agora.
keypoints2d_human_data, mask = convert_kps(keypoints2d_agora, 'agora', 'human_data')
keypoints2d_human_data is a numpy array in shape [frame_num, 190, 3], only 127/190 are␣
→˓valid
mask is a numpy array in shape [190,], with 127 ones and 63 zeros inside

Set keypoints2d_mask and keypoints2d. It is obvious that there are redundant zeros in keypoints2d:

human_data = HumanData()
human_data['keypoints2d_mask'] = mask
human_data['keypoints2d'] = keypoints2d_human_data

Call compress_keypoints_by_mask() to get rid of the zeros. This method checks if any key containing keypoints
has a corresponding mask, and performs keypoints compression if both keypoints and masks are present. :

18 Chapter 4. HumanData

MMHuman3D, Release 0.11.0

human_data.compress_keypoints_by_mask()

Call get_raw_value() to get the compressed raw value stored in HumanData instance. When getting item with [],
the keypoints padded with zeros will be returned:

keypoints2d_human_data = human_data.get_raw_value('keypoints2d')
print(keypoints2d_human_data.shape) # [frame_num, 127, 3]
keypoints2d_human_data = human_data['keypoints2d']
print(keypoints2d_human_data.shape) # [frame_num, 190, 3]

In keypoints_compressed mode, keypoints are allowed to be edited. There are two different ways, set with padded
data or set the compressed data directly:

padded_keypoints2d = np.zeros(shape=[100, 190, 3])
human_data['keypoints2d'] = padded_keypoints2d # [frame_num, 190, 3]
compressed_keypoints2d = np.zeros(shape=[100, 127, 3])
human_data.set_raw_value('keypoints2d', compressed_keypoints2d) # [frame_num, 127, 3]

When a HumanData instance is in keypoints_compressed mode, all masks of keypoints are locked. If you are
trying to edit it, a warning will be logged and the value won’t change. To modify a mask, de-compress it with
decompress_keypoints():

human_data.decompress_keypoints()

Features above also work with any key pairs like keypoints* and keypoints*_mask.

4.3.2 Compression for file

Call dump() to save HumanData into a compressed .npz file.

The dumped file can be load by load() :

save
human_data.dump('./dumped_human_data.npz')
load
another_human_data = HumanData()
another_human_data.load('./dumped_human_data.npz')

Sometimes a HumanData instanse is too large to dump, an error will be raised by numpy.savez_compressed(). In
this case, call dump_by_pickle and load_by_pickle for file operation.

4.3.3 Compression by key

If a HumanData instance is in not in key_strict mode, it may contains unsupported items which are not necessary. Call
pop_unsupported_items() to remove those items will save space for you:

human_data = HumanData.fromfile('human_data_not_strict.npz')
human_data.pop_unsupported_items()
set instance.__key_strict__ from True to False will also do
human_data.set_key_strict(True)

4.3. Data compression 19

MMHuman3D, Release 0.11.0

4.4 Data selection

4.4.1 Select by shape

Assume that keypoints2d is an array in shape [200, 190, 3], only the first 10 frames are needed:

first_ten_frames = human_data.get_value_in_shape('keypoints2d', shape=[10, -1, -1])

In some situation, we need to pad all arrays to a certain size:

pad keypoints2d from [200, 190, 3] to [200, 300, 3] with zeros
padded_keypoints2d = human_data.get_value_in_shape('keypoints2d', shape=[200, 300, -1])
padding value can be modified
padded_keypoints2d = human_data.get_value_in_shape('keypoints2d', shape=[200, 300, -1],␣
→˓padding_constant=1)

4.4.2 Select temporal slice

Assume that there are 200 frames in a HumanData instance, only data between 10 and 20 are needed:

all supported values will be sliced
sub_human_data = human_data.get_slice(10, 21)

Downsample is also supported, for example, select 33%:

select [0, 3, 6, 9,..., 198]
sub_human_data = human_data.get_slice(0, 200, 3)

4.5 To torch.Tensor

As introduced, a native HumanData contains values in numpy.ndarray or python built-in types, but the numpy.ndarray
can be easily convert to torch.Tensor:

All values as ndarray will be converted to a cpu Tensor.
Values in other types will not change.
It returns a dict like HumanData.
dict_of_tensor = human_data.to()
GPU is also supported
gpu0_device = torch.device('cuda:0')
dict_of_gpu_tensor = human_data.to(gpu0_device)

20 Chapter 4. HumanData

CHAPTER

FIVE

MULTIHUMANDATA

MulitHumanData is designed to support multi-human body mesh recovery, who inherits from HumanData. In Human-
Data, the data can be accessed directly through the index, because the data and the image are in one-to-one correspon-
dence. However, data and image have a many-to-one correspondence in MultiHumanData.

Based on HumanData, MultiHumanData adds a new key named 'frame_range' as follows:

'frame_range': {
'type': np.ndarray,
'shape': (-1, 2),
'dim': 0

}

frame_range and image are in one-to-one correspondence. Each element in frame_range has two pointers that point
to a data-block.

Suppose we have an instance of MultiHumanData and we want to access the data corresponding to the i-th image. First,
we index the frame_range using primary index i, which will return two points. We then use these two pointers to
access all data corresponding to the i-th image.

image_0 ----> human_0 <--- frame_range[0][0]
- .
- .
--> human_(n-1) <--- frame_range[0][0] + (n-1)
-> human_n <--- frame_range[0][1]

.

.

.

image_n ----> human_0 <--- frame_range[n][0]
- .
- .
--> human_(n-1) <--- frame_range[n][0] + (n-1)
-> human_n <--- frame_range[n][1]

21

MMHuman3D, Release 0.11.0

22 Chapter 5. MultiHumanData

CHAPTER

SIX

DATA PREPARATION

• Datasets for supported algorithms

• Folder structure

– AGORA

– COCO

– COCO-WholeBody

– CrowdPose

– EFT

– GTA-Human

– Human3.6M

– Human3.6M Mosh

– HybrIK

– LSP

– LSPET

– MPI-INF-3DHP

– MPII

– PoseTrack18

– Penn Action

– PW3D

– SPIN

– SURREAL

23

MMHuman3D, Release 0.11.0

6.1 Overview

Our data pipeline use HumanData structure for storing and loading. The proprocessed npz files can be obtained from
raw data using our data converters, and the supported configs can be found here.

These are our supported converters and their respective dataset-name:

• AgoraConverter (agora)

• AmassConverter (amass)

• CocoConverter (coco)

• CocoHybrIKConverter (coco_hybrik)

• CocoWholebodyConverter (coco_wholebody)

• CrowdposeConverter (crowdpose)

• EftConverter (eft)

• GTAHumanConverter (gta_human)

• H36mConverter (h36m_p1, h36m_p2)

• H36mHybrIKConverter (h36m_hybrik)

• InstaVibeConverter (instavariety_vibe)

• LspExtendedConverter (lsp_extended)

• LspConverter (lsp_original, lsp_dataset)

• MpiiConverter (mpii)

• MpiInf3dhpConverter (mpi_inf_3dhp)

• MpiInf3dhpHybrIKConverter (mpi_inf_3dhp_hybrik)

• PennActionConverter (penn_action)

• PosetrackConverter (posetrack)

• Pw3dConverter (pw3d)

• Pw3dHybrIKConverter (pw3d_hybrik)

• SurrealConverter (surreal)

• SpinConverter (spin)

• Up3dConverter (up3d)

6.2 Datasets for supported algorithms

For all algorithms, the root path for our datasets and output path for our preprocessed npz files are stored in data/
datasets and data/preprocessed_datasets. As such, use this command with the listed dataset-names:

python tools/convert_datasets.py \
--datasets <dataset-name> \
--root_path data/datasets \
--output_path data/preprocessed_datasets

For HMR training and testing, the following datasets are required:

24 Chapter 6. Data preparation

https://github.com/open-mmlab/mmhuman3d/tree/main/tools/convert_datasets.py

MMHuman3D, Release 0.11.0

• COCO

• Human3.6M

• Human3.6M Mosh

• MPI-INF-3DHP

• MPII

• LSP

• LSPET

• PW3D

Convert datasets with the following dataset-names:

coco, pw3d, mpii, mpi_inf_3dhp, lsp_original, lsp_extended, h36m

Alternatively, you may download the preprocessed files directly:

• cmu_mosh.npz

• coco_2014_train.npz

• h36m_train.npz

• lsp_train.npz

• lspet_train.npz

• mpi_inf_3dhp_train.npz

• mpii_train.npz

• pw3d_test.npz

Unfortunately, we are unable to distribute h36m_mosh_train.npz due to license limitations. However, we provide the
conversion tools should you possess the raw mosh data. Prefer refer to Human3.6M Mosh on details for conversion.

The preprocessed datasets should have this structure:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
preprocessed_datasets

coco_2014_train.npz
h36m_train.npz or h36m_mosh_train.npz (if mosh is available)
lspet_train.npz
lsp_train.npz
mpi_inf_3dhp_train.npz
mpii_train.npz
pw3d_test.npz

For SPIN training, the following datasets are required:

• COCO

6.2. Datasets for supported algorithms 25

https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/cmu_mosh.npz?versionId=CAEQHhiBgIDoof_37BciIDU0OGU0MGNhMjAxMjRiZWI5YzdkMWEzMzc3YzBiZDM2
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/coco_2014_train.npz?versionId=CAEQHhiBgICUrvbS6xciIDFmZmFhMDk5OGQ3YzQ5ZDE5NzJkMGQxNzdmMmQzZDdi
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/h36m_train.npz?versionId=CAEQHhiBgMDrrfbS6xciIGY2NjMxMjgwMWQzNjRkNWJhYTNkZTYyYWUxNWQ4ZTE5
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/lsp_train.npz?versionId=CAEQHhiBgICnq_bS6xciIDU4ZTRhMDIwZTBkZjQ1YTliYTY0NGFmMDVmOGVhZjMy
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/lspet_train.npz?versionId=CAEQHhiBgICXrPbS6xciIDVkZGNmYWZjODlmMzQ2YjNhMjhlNmJmMzU2MjM4Yzg4
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/mpi_inf_3dhp_train.npz?versionId=CAEQHhiBgMD3q_bS6xciIGQwYjc4NTRjYTllMzRkODU5NTNiZDQyOTBlYmRhODg5
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/mpii_train.npz?versionId=CAEQHhiBgIDhq_bS6xciIDEwMmE0ZDc0NWI1NjQ2NWZhYTA5ZjEyODBiNWFmODg1
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/pw3d_test.npz?versionId=CAEQHhiBgMDaq_bS6xciIGVjY2YzZGJkNjNmMjQ2NGU4OTZkYjMwMjhhYWM1Y2I0

MMHuman3D, Release 0.11.0

• Human3.6M

• Human3.6M Mosh

• MPI-INF-3DHP

• MPII

• LSP

• LSPET

• PW3D

• SPIN

Convert datasets with the following dataset-names:

spin, h36m

Alternatively, you may download the preprocessed files directly:

• spin_coco_2014_train.npz

• h36m_train.npz

• spin_lsp_train.npz

• spin_lspet_train.npz

• spin_mpi_inf_3dhp_train.npz

• spin_mpii_train.npz

• spin_pw3d_test.npz

Unfortunately, we are unable to distribute h36m_mosh_train.npz due to license limitations. However, we provide
the conversion tools should you posses the raw mosh data. Prefer refer to Human3.6M Mosh on details for conversion.

The preprocessed datasets should have this structure:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
preprocessed_datasets

spin_coco_2014_train.npz
h36m_train.npz or h36m_mosh_train.npz (if mosh is available)
spin_lsp_train.npz
spin_lspet_train.npz
spin_mpi_inf_3dhp_train.npz
spin_mpii_train.npz
spin_pw3d_test.npz

For VIBE training and testing, the following datasets are required:

• MPI-INF-3DHP

• PW3D

26 Chapter 6. Data preparation

https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/spin_coco_2014_train.npz?versionId=CAEQHhiBgICb6bfT6xciIGM2NmNmZDYyNDMxMDRiNTVhNDk3YzY1N2Y2ODdlMTAy
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/h36m_train.npz?versionId=CAEQHhiBgMDrrfbS6xciIGY2NjMxMjgwMWQzNjRkNWJhYTNkZTYyYWUxNWQ4ZTE5
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/spin_lsp_train.npz?versionId=CAEQHhiBgIDu57fT6xciIDQ0ODAzNjUyNjJkMzQyNzQ5Y2IzNGNhOTZmZGI2NzBm
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/spin_lspet_train.npz?versionId=CAEQHhiBgMCe6LfT6xciIDc3NzZiYzA1ZGJkYzQwNzRhYjg3ZDMwYTdjZDZmNTAw
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/spin_mpi_inf_3dhp_train.npz?versionId=CAEQHhiBgMCV6LfT6xciIDliYTJhM2FkNDkyYjRiOWFiYTUwOTk0MGRlNThlZWRk
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/spin_mpii_train.npz?versionId=CAEQHhiBgMDz57fT6xciIGJjMzAwMDdlYTBmMTQ0MDg4ZGE4YjhiZGNkNWQwZmM1
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/spin_pw3d_test.npz?versionId=CAEQHhiBgMCL6LfT6xciIGUxNjY3OTBiODU5ZDQxODliYTQ4NzU0OGVjMzJkYmRm

MMHuman3D, Release 0.11.0

The data converters are currently not available.

Alternatively, you may download the preprocessed files directly:

• vibe_insta_variety.npz

• vibe_mpi_inf_3dhp_train.npz

• vibe_pw3d_test.npz

The preprocessed datasets should have this structure:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
preprocessed_datasets

vibe_insta_variety.npz
vibe_mpi_inf_3dhp_train.npz
vibe_pw3d_test.npz

For HYBRIK training and testing, the following datasets are required:

• HybrIK

• COCO

• Human3.6M

• MPI-INF-3DHP

• PW3D

Convert datasets with the following dataset-names:

h36m_hybrik, pw3d_hybrik, mpi_inf_3dhp_hybrik, coco_hybrik

Alternatively, you may download the preprocessed files directly:

• hybriK_coco_2017_train.npz

• hybrik_h36m_train.npz

• hybrik_mpi_inf_3dhp_train.npz

• hybrik_pw3d_test.npz

The preprocessed datasets should have this structure:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
preprocessed_datasets

(continues on next page)

6.2. Datasets for supported algorithms 27

https://pjlab-my.sharepoint.cn/:u:/g/personal/openmmlab_pjlab_org_cn/EYnlkp-69NBNlXDH-5ELZikBXDbSg8SZHqmdSX_3hK4EYg?e=QUl5nI
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/vibe_mpi_inf_3dhp_train.npz?versionId=CAEQHhiBgICTnq3U6xciIGUwMTc5YWQ2MjNhZDQ3NGE5MmYxOWJhMGQxMTcwNTll
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/vibe_pw3d_test.npz?versionId=CAEQHhiBgMD5na3U6xciIGQ4MmU0MjczYTYzODQ1NDQ5M2JiNzY1N2E5MTNlOWY5
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/hybrik_coco_2017_train.npz?versionId=CAEQHhiBgMDA6rjT6xciIDE3N2FiZDkxYTkyZDRjN2ZiYjc1ODQ2YTc5NjY0ZmFl
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/hybrik_h36m_train.npz?versionId=CAEQHhiBgIC_iLjT6xciIGE4NmQ5YzUxMzY0ZjQ0Y2U5MWFkOTkwNmIwMGI4NTNm
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/hybrik_mpi_inf_3dhp_train.npz?versionId=CAEQHhiBgICogLjT6xciIDQwYzRlYTVlOTE0YTQ4ZDRhYTljOGRkZDc1MDhjNDgy
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/hybrik_pw3d_test.npz?versionId=CAEQHhiBgMCO8LfT6xciIDhjMDFhOTFmZjY4MDQ4MWI4MzVmODYyYTc1NTYwNjA1

MMHuman3D, Release 0.11.0

(continued from previous page)

hybriK_coco_2017_train.npz
hybrik_h36m_train.npz
hybrik_mpi_inf_3dhp_train.npz
hybrik_pw3d_test.npz

For PARE training, the following datasets are required:

• Human3.6M

• Human3.6M Mosh

• MPI-INF-3DHP

• EFT-COCO

• EFT-MPII

• EFT-LSPET

• PW3D

Convert datasets with the following dataset-names:

h36m, coco, mpii, lspet, mpi-inf-3dhp, pw3d

Alternatively, you may download the preprocessed files directly:

• h36m_train.npz

• mpi_inf_3dhp_train.npz

• eft_mpii.npz

• eft_lspet.npz

• eft_coco_all.npz

• pw3d_test.npz

The preprocessed datasets should have this structure:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
preprocessed_datasets

h36m_mosh_train.npz
h36m_train.npz
mpi_inf_3dhp_train.npz
eft_mpii.npz
eft_lspet.npz
eft_coco_all.npz
pw3d_test.npz

For ExPose training, the following datasets are required:

• Human3.6M

28 Chapter 6. Data preparation

https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/h36m_train.npz?versionId=CAEQHhiBgMDrrfbS6xciIGY2NjMxMjgwMWQzNjRkNWJhYTNkZTYyYWUxNWQ4ZTE5
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/mpi_inf_3dhp_train.npz?versionId=CAEQHhiBgMD3q_bS6xciIGQwYjc4NTRjYTllMzRkODU5NTNiZDQyOTBlYmRhODg5
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/eft_mpii.npz?versionId=CAEQOhiBgMCXlty_gxgiIDYxNDc5YTIzZjBjMDRhMGM5ZjBiZmYzYjFjMTU1ZTRm
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/eft_lspet.npz?versionId=CAEQOhiBgMC339u_gxgiIDZlNzk1YjMxMWRmMzRkNWJiNjg1OTI2Mjg5OTA1YzJh
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/eft_coco_all.npz?versionId=CAEQOhiBgID3iuS_gxgiIDgwYzU4NTc3ZWRkNDQyNGJiYzU4MGViYTFhYTFmMmUx
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/pw3d_test.npz?versionId=CAEQHhiBgMDaq_bS6xciIGVjY2YzZGJkNjNmMjQ2NGU4OTZkYjMwMjhhYWM1Y2I0

MMHuman3D, Release 0.11.0

• FreiHand

• EHF

• FFHQ

• ExPose-Curated-fits

• SPIN_SMPLX

• Stirling-ESRC3D

• PW3D

Convert datasets with the following dataset-names:

h36m, EHF, FreiHand, 3DPW, stirling, spin_in_smplx, ffhq, ExPose_curated_fits

Alternatively, you may download the preprocessed files directly:

• curated_fits_train.npz

• ehf_val.npz

• ffhq_flame_train.npz

• freihand_test.npz

• freihand_train.npz

• freihand_val.npz

• h36m_smplx_train.npz

• spin_smplx_train.npz

• stirling_ESRC3D_HQ.npz

• pw3d_test.npz

The preprocessed datasets should have this structure:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
preprocessed_datasets

curated_fits_train.npz
ehf_val.npz
ffhq_flame_train.npz
freihand_test.npz
freihand_train.npz
freihand_val.npz
h36m_smplx_train.npz
pw3d_test.npz
spin_smplx_train.npz
stirling_ESRC3D_HQ.npz

6.2. Datasets for supported algorithms 29

https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/curated_fits_train.npz?versionId=CAEQRBiBgICB7KzvjhgiIDI3NmRjZTM5ODQxYzQwZWNhZGZlMTMwZGIwYTM2ZTZk
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/ehf_val.npz?versionId=CAEQRBiBgIC65qzvjhgiIGMyOTUwZDM3NzUwNzRlODU5MGE1NjlmMDA1OGMxNjdk
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/ffhq_flame_train.npz?versionId=CAEQRBiBgMCT4KzvjhgiIGMwMjFkZWNmMGZlNTQzYjVhMDdhMzA0MTQ1MTBjZDRi
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/freihand_test.npz?versionId=CAEQRBiBgMDX3qzvjhgiIGY3ZmFiZGRjYWQ3NjQwOWU5MWRkZGU5ZmM4YjEyZDYw
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/freihand_train.npz?versionId=CAEQRBiBgIDr46zvjhgiIGQ1YmM2MGRkNDdhNTRkMzdiNTc3ZTJmMWFhOGNhOGVh
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/freihand_val.npz?versionId=CAEQRBiBgID03qzvjhgiIDY3MmQ1MDA1ZjY3NDRkZTFhYjc2MDFiOGFhNjFhNDNm
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/h36m_expose_train.npz?versionId=CAEQRBiCgID03qzvjhgiIGNhYmI2MzA0YzE4ODQ2Yjk4MmEzNThkODVkMjI3MTI2
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/spin_smplx_train.npz?versionId=CAEQRBiBgIDd3qzvjhgiIDhlZjM2OTdiYmQ5MTRmYTdiMDI5ZmFjOGI0YmI0YmMx
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/stirling_ESRC3D_HQ.npz?versionId=CAEQRBiBgIDm3qzvjhgiIDI1NGY1NDEyZDVlZDQzNWNiNGYxOWVlZjhhYzZlMmY3
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/pw3d_test.npz?versionId=CAEQHhiBgMDaq_bS6xciIGVjY2YzZGJkNjNmMjQ2NGU4OTZkYjMwMjhhYWM1Y2I0

MMHuman3D, Release 0.11.0

6.3 Folder structure

6.3.1 AGORA

@inproceedings{Patel:CVPR:2021,
title = {{AGORA}: Avatars in Geography Optimized for Regression Analysis},
author = {Patel, Priyanka and Huang, Chun-Hao P. and Tesch, Joachim and Hoffmann, David␣
→˓T. and Tripathi, Shashank and Black, Michael J.},
booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (
→˓{CVPR})},
month = jun,
year = {2021},
month_numeric = {6}
}

For AGORA, please download the dataset and place them in the folder structure below:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
agora

camera_dataframe # smplx annotations
train_0_withjv.pkl
validation_0_withjv.pkl
...

camera_dataframe_smpl # smpl annotations
train_0_withjv.pkl
validation_0_withjv.pkl
...

images
train

ag_trainset_3dpeople_bfh_archviz_5_10_cam00_00000_1280x720.png
ag_trainset_3dpeople_bfh_archviz_5_10_cam00_00001_1280x720.png
...

validation
test

smpl_gt
trainset_3dpeople_adults_bfh

10004_w_Amaya_0_0.mtl
10004_w_Amaya_0_0.obj
10004_w_Amaya_0_0.pkl
...

...
smplx_gt

10004_w_Amaya_0_0.obj
10004_w_Amaya_0_0.pkl
...

30 Chapter 6. Data preparation

https://agora.is.tue.mpg.de/index.html
https://agora.is.tue.mpg.de/download.php

MMHuman3D, Release 0.11.0

6.3.2 AMASS

@inproceedings{AMASS:2019,
title={AMASS: Archive of Motion Capture as Surface Shapes},
author={Mahmood, Naureen and Ghorbani, Nima and F. Troje, Nikolaus and Pons-Moll,␣

→˓Gerard and Black, Michael J.},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
year={2019},
month = {Oct},
url = {https://amass.is.tue.mpg.de},
month_numeric = {10}

}

Details for direct preprocessing will be added in the future.

Alternatively, you may download the preprocessed files directly:

• amass_smplh.npz

• amass_smplx.npz

6.3.3 COCO

@inproceedings{lin2014microsoft,
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and␣

→˓Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}

}

For COCO data, please download from COCO download. COCO’2014 Train is needed for HMR training and
COCO’2017 Train is needed for HybrIK trainig. Download and extract them under $MMHUMAN3D/data/datasets,
and make them look like this:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
coco

annotations
| person_keypoints_train2014.json
| person_keypoints_val2014.json

train2014
COCO_train2014_000000000009.jpg
COCO_train2014_000000000025.jpg
COCO_train2014_000000000030.jpg

(continues on next page)

6.3. Folder structure 31

https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/amass_smplh.npz?versionId=CAEQIhiBgICS4Mrt7xciIGU5MDBmZmE4Y2I0NjRiYTc4ZWY2NzY2MzU1ZmIwZTQ2
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/amass_smplx.npz?versionId=CAEQIhiBgIDh387t7xciIGRlN2JlZjA0ZGM0YzRkNmM5OWJhNmVjMmZlN2RiN2E1
http://cocodataset.org/
http://cocodataset.org/#download

MMHuman3D, Release 0.11.0

(continued from previous page)

| ...
train_2017

annotations
person_keypoints_train2017.json
person_keypoints_val2017.json

train2017
000000000009.jpg
000000000025.jpg
000000000030.jpg
...

val2017
000000000139.jpg
000000000285.jpg
000000000632.jpg
...

6.3.4 COCO-WholeBody

@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian,␣

→˓Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}

}

For COCO-WholeBody dataset, images can be downloaded from COCO download, 2017 Train/Val is needed for COCO
keypoints training and validation. Download and extract them under $MMHUMAN3D/data/datasets, and make them
look like this:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
coco

annotations
| coco_wholebody_train_v1.0.json
| coco_wholebody_val_v1.0.json

train_2017
train2017

000000000009.jpg
000000000025.jpg
000000000030.jpg
...

val2017
000000000139.jpg

(continues on next page)

32 Chapter 6. Data preparation

https://github.com/jin-s13/COCO-WholeBody/
http://cocodataset.org/#download

MMHuman3D, Release 0.11.0

(continued from previous page)

000000000285.jpg
000000000632.jpg
...

6.3.5 CrowdPose

@article{li2018crowdpose,
title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and␣

→˓Lu, Cewu},
journal={arXiv preprint arXiv:1812.00324},
year={2018}

}

For CrowdPose data, please download from CrowdPose. Download and extract them under $MMHUMAN3D/data/
datasets, and make them look like this:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
crowdpose

crowdpose_train.json
crowdpose_val.json
crowdpose_trainval.json
crowdpose_test.json
images

100000.jpg
100001.jpg
100002.jpg
...

6.3.6 EFT

@inproceedings{joo2020eft,
title={Exemplar Fine-Tuning for 3D Human Pose Fitting Towards In-the-Wild 3D Human Pose␣
→˓Estimation},
author={Joo, Hanbyul and Neverova, Natalia and Vedaldi, Andrea},
booktitle={3DV},
year={2020}
}

For EFT data, please download from EFT. Download and extract them under $MMHUMAN3D/data/datasets, and
make them look like this:

6.3. Folder structure 33

https://github.com/Jeff-sjtu/CrowdPose
https://github.com/Jeff-sjtu/CrowdPose
https://github.com/facebookresearch/eft
https://github.com/facebookresearch/eft

MMHuman3D, Release 0.11.0

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
eft

coco_2014_train_fit
| COCO2014-All-ver01.json
| COCO2014-Part-ver01.json
| LSPet_fit
| LSPet_ver01.json

MPII_fit
MPII_ver01.json

6.3.7 GTA-Human

@article{cai2021playing,
title={Playing for 3D Human Recovery},
author={Cai, Zhongang and Zhang, Mingyuan and Ren, Jiawei and Wei, Chen and Ren,␣

→˓Daxuan and Li, Jiatong and Lin, Zhengyu and Zhao, Haiyu and Yi, Shuai and Yang, Lei␣
→˓and others},
journal={arXiv preprint arXiv:2110.07588},
year={2021}

}

More details are coming soon!

6.3.8 Human3.6M

@article{h36m_pami,
author = {Ionescu, Catalin and Papava, Dragos and Olaru, Vlad and Sminchisescu, ␣

→˓Cristian},
title = {Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing␣

→˓in Natural Environments},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
publisher = {IEEE Computer Society},
volume = {36},
number = {7},
pages = {1325-1339},
month = {jul},
year = {2014}

}

For Human3.6M, please download from the official website and run the preprocessing script, which will extract pose
annotations at downsampled framerate (10 FPS). The processed data should have the following structure:

34 Chapter 6. Data preparation

http://vision.imar.ro/human3.6m/description.php
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/data/data_converters/h36m.py

MMHuman3D, Release 0.11.0

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
h36m

annot
S1

| images
| | | S1_Directions_1.54138969
| | | S1_Directions_1.54138969_00001.jpg
| | | S1_Directions_1.54138969_00006.jpg
| | | ...
| | ...
| MyPoseFeatures
| | | D2Positions
| | D3_Positions_Mono
| MySegmentsMat
| | ground_truth_bs
| Videos
| | Directions 1.54138969.mp4
| | Directions 1.55011271.mp4
| ...

S5
S6
S7
S8
S9
S11
metadata.xml

To extract images from Human3.6M original videos, modify the h36m_p1 config in DATASET_CONFIG:

h36m_p1=dict(
type='H36mConverter',
modes=['train', 'valid'],
protocol=1,
extract_img=True, # set to true to extract images from raw videos
prefix='h36m'),

6.3. Folder structure 35

http://vision.imar.ro/human3.6m/description.php
https://github.com/open-mmlab/mmhuman3d/blob/main/tools/convert_datasets.py

MMHuman3D, Release 0.11.0

6.3.9 Human3.6M Mosh

For data preparation of Human3.6M for HMR, SPIN and PARE training, we use the MoShed data provided in HMR
for training. However, due to license limitations, we are not allowed to redistribute the data. Even if you do not have
access to these parameters, you can still generate the preprocessed h36m npz file without mosh parameters using our
converter.

You will need to extract images from raw videos for training. Do note that preprocessing can take a long time if image
extraction is required. To do so, modify the h36m_p1 config in DATASET_CONFIG:

Config without mosh:

h36m_p1=dict(
type='H36mConverter',
modes=['train', 'valid'],
protocol=1,
extract_img=True, # this is to specify you want to extract images from videos
prefix='h36m'),

Config with mosh:

h36m_p1=dict(
type='H36mConverter',
modes=['train', 'valid'],
protocol=1,
extract_img=True, # this is to specify you want to extract images from videos
mosh_dir='data/datasets/h36m_mosh', # supply the directory to the mosh if available
prefix='h36m'),

If you have MoShed data available, it should have the following structure:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
h36m_mosh

annot
S1

| images
| | Directions 1_cam0_aligned.pkl
| | Directions 1_cam1_aligned.pkl
| | ...

S5
S6
S7
S8
S9
S11

36 Chapter 6. Data preparation

http://vision.imar.ro/human3.6m/description.php
https://mosh.is.tue.mpg.de/
https://github.com/akanazawa/hmr
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/data/data_converters/h36m.py
https://github.com/open-mmlab/mmhuman3d/blob/main/tools/convert_datasets.py

MMHuman3D, Release 0.11.0

6.3.10 HybrIK

@inproceedings{li2020hybrikg,
author = {Li, Jiefeng and Xu, Chao and Chen, Zhicun and Bian, Siyuan and Yang, Lixin␣

→˓and Lu, Cewu},
title = {HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human␣

→˓Pose and Shape Estimation},
booktitle={CVPR 2021},
pages={3383--3393},
year={2021},
organization={IEEE}

}

For HybrIK, please download the parsed json annotation files and place them in the folder structure below:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
hybrik_data

Sample_5_train_Human36M_smpl_leaf_twist_protocol_2.json
Sample_20_test_Human36M_smpl_protocol_2.json
3DPW_test_new.json
annotation_mpi_inf_3dhp_train_v2.json
annotation_mpi_inf_3dhp_test.json

To convert the preprocessed json files into npz files used for our pipeline, run the following preprocessing scripts:

• Human3.6M

• PW3D

• Mpi-Inf-3dhp

• COCO

6.3.11 LSP

@inproceedings{johnson2010clustered,
title={Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation.},
author={Johnson, Sam and Everingham, Mark},
booktitle={bmvc},
volume={2},
number={4},
pages={5},
year={2010},
organization={Citeseer}

}

For LSP, please download the high resolution version LSP dataset original. Extract them under $MMHUMAN3D/data/
datasets, and make them look like this:

6.3. Folder structure 37

https://github.com/Jeff-sjtu/HybrIK
https://github.com/Jeff-sjtu/HybrIK#fetch-data
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/data/data_converters/h36m_hybrik.py
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/data/data_converters/pw3d_hybrik.py
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/data/data_converters/mpi_inf_3dhp_hybrik.py
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/data/data_converters/coco_hybrik.py
https://sam.johnson.io/research/lsp.html
http://sam.johnson.io/research/lsp_dataset_original.zip

MMHuman3D, Release 0.11.0

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
lsp

images
| im0001.jpg
| im0002.jpg
| ...

joints.mat

6.3.12 LSPET

@inproceedings{johnson2011learning,
title={Learning effective human pose estimation from inaccurate annotation},
author={Johnson, Sam and Everingham, Mark},
booktitle={CVPR 2011},
pages={1465--1472},
year={2011},
organization={IEEE}

}

For LSPET, please download its high resolution form HR-LSPET. Extract them under $MMHUMAN3D/data/datasets,
and make them look like this:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
lspet

im00001.jpg
im00002.jpg
im00003.jpg
...
joints.mat

38 Chapter 6. Data preparation

https://sam.johnson.io/research/lspet.html
http://datasets.d2.mpi-inf.mpg.de/hr-lspet/hr-lspet.zip

MMHuman3D, Release 0.11.0

6.3.13 MPI-INF-3DHP

@inproceedings{mono-3dhp2017,
author = {Mehta, Dushyant and Rhodin, Helge and Casas, Dan and Fua, Pascal and␣
→˓Sotnychenko, Oleksandr and Xu, Weipeng and Theobalt, Christian},
title = {Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision},
booktitle = {3D Vision (3DV), 2017 Fifth International Conference on},
url = {http://gvv.mpi-inf.mpg.de/3dhp_dataset},
year = {2017},
organization={IEEE},
doi={10.1109/3dv.2017.00064},
}

You will need to extract images from raw videos for training. Do note that preprocessing can take a long time if image
extraction is required. To do so, modify the mpi_inf_3dhp config in DATASET_CONFIG:

Config:

mpi_inf_3dhp=dict(
type='MpiInf3dhpConverter',
modes=['train', 'test'],
extract_img=True), # this is to specify you want to extract images from videos

For MPI-INF-3DHP, download and extract them under $MMHUMAN3D/data/datasets, and make them look like this:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
mpi_inf_3dhp

mpi_inf_3dhp_test_set
TS1
TS2
TS3
TS4
TS5
TS6

S1
Seq1
Seq2

S2
Seq1
Seq2

S3
Seq1
Seq2

S4
Seq1
Seq2

S5
(continues on next page)

6.3. Folder structure 39

https://github.com/open-mmlab/mmhuman3d/blob/main/tools/convert_datasets.py
http://gvv.mpi-inf.mpg.de/3dhp-dataset/

MMHuman3D, Release 0.11.0

(continued from previous page)

Seq1
Seq2

S6
Seq1
Seq2

S7
Seq1
Seq2

S8
Seq1
Seq2

6.3.14 MPII

@inproceedings{andriluka14cvpr,
author = {Mykhaylo Andriluka and Leonid Pishchulin and Peter Gehler and Schiele, Bernt}

→˓,
title = {2D Human Pose Estimation: New Benchmark and State of the Art Analysis},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2014},
month = {June}

}

For MPII data, please download images from [MPII Human Pose Dataset](http://human-pose.mpi-inf.mpg.de/ and
annotations from here. Extract them under $MMHUMAN3D/data/datasets, and make them look like this:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
mpii
| train.h5

images
| 000001163.jpg
| 000003072.jpg

...

40 Chapter 6. Data preparation

http://human-pose.mpi-inf.mpg.de/
https://github.com/princeton-vl/pose-hg-train/tree/master/data/mpii/annot?rgh-link-date=2020-07-05T04%3A14%3A02Z

MMHuman3D, Release 0.11.0

6.3.15 PoseTrack18

@inproceedings{andriluka2018posetrack,
title={Posetrack: A benchmark for human pose estimation and tracking},
author={Andriluka, Mykhaylo and Iqbal, Umar and Insafutdinov, Eldar and Pishchulin,␣

→˓Leonid and Milan, Anton and Gall, Juergen and Schiele, Bernt},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern␣

→˓Recognition},
pages={5167--5176},
year={2018}

}

For PoseTrack18 data, please download from PoseTrack18. Extract them under $MMHUMAN3D/data/datasets, and
make them look like this:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
posetrack

images
train

000001_bonn_train
000000.jpg
000001.jpg
...

...
val

000342_mpii_test
000000.jpg
000001.jpg
...

...
test

000001_mpiinew_test
000000.jpg
000001.jpg
...

...
posetrack_data

annotations
train

000001_bonn_train.json
000002_bonn_train.json
...

val
000342_mpii_test.json
000522_mpii_test.json
...

(continues on next page)

6.3. Folder structure 41

https://posetrack.net/users/download.php
https://posetrack.net/users/download.php

MMHuman3D, Release 0.11.0

(continued from previous page)

test
000001_mpiinew_test.json
000002_mpiinew_test.json
...

6.3.16 Penn Action

@inproceedings{zhang2013pennaction,
title={From Actemes to Action: A Strongly-supervised Representation for Detailed Action␣
→˓Understanding},
author={Zhang, Weiyu and Zhu, Menglong and Derpanis, Konstantinos},
booktitle={ICCV},
year={2013}
}

For Penn Action data, please download from Penn Action. Extract them under $MMHUMAN3D/data/datasets, and
make them look like this:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
penn_action

frames
0001

000001.jpg
000002.jpg
...

...
labels

0001.mat
0002.mat
...

6.3.17 PW3D

@inproceedings{vonMarcard2018,
title = {Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera},
author = {von Marcard, Timo and Henschel, Roberto and Black, Michael and Rosenhahn, Bodo␣
→˓and Pons-Moll, Gerard},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2018},
month = {sep}
}

42 Chapter 6. Data preparation

http://dreamdragon.github.io/PennAction/
https://upenn.box.com/PennAction

MMHuman3D, Release 0.11.0

For PW3D data, please download from PW3D Dataset. Extract them under $MMHUMAN3D/data/datasets, and make
them look like this:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
pw3d
| imageFiles
| | courtyard_arguing_00
| | image_00000.jpg
| | image_00001.jpg
| | ...

sequenceFiles
train

downtown_arguing_00.pkl
...

val
courtyard_arguing_00.pkl
...

test
courtyard_basketball_00.pkl
...

6.3.18 SPIN

@inproceedings{kolotouros2019spin,
author = {Kolotouros, Nikos and Pavlakos, Georgios and Black, Michael J and Daniilidis,

→˓ Kostas},
title = {Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop}

→˓,
booktitle={ICCV},
year={2019}

}

For SPIN, please download the preprocessed npz files and place them in the folder structure below:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
spin_data

coco_2014_train.npz
hr-lspet_train.npz

(continues on next page)

6.3. Folder structure 43

https://virtualhumans.mpi-inf.mpg.de/3DPW/
https://virtualhumans.mpi-inf.mpg.de/3DPW/
https://github.com/nkolot/SPIN
https://github.com/nkolot/SPIN/blob/master/fetch_data.sh

MMHuman3D, Release 0.11.0

(continued from previous page)

lsp_dataset_original_train.npz
mpi_inf_3dhp_train.npz
mpii_train.npz

6.3.19 SURREAL

@inproceedings{varol17_surreal,
title = {Learning from Synthetic Humans},
author = {Varol, G{\"u}l and Romero, Javier and Martin, Xavier and Mahmood, Naureen␣
→˓and Black, Michael J. and Laptev, Ivan and Schmid, Cordelia},
booktitle = {CVPR},
year = {2017}
}

For SURREAL, please download the [dataset] (https://www.di.ens.fr/willow/research/surreal/data/) and place them in
the folder structure below:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
surreal

train
run0

| | 03_01
| | 03_01_c0001_depth.mat
| | 03_01_c0001_info.mat
| | 03_01_c0001_segm.mat
| | 03_01_c0001.mp4
| | ...
| | ...

run1
run2

val
run0
run1
run2

test
run0
run1
run2

44 Chapter 6. Data preparation

https://www.di.ens.fr/willow/research/surreal/

MMHuman3D, Release 0.11.0

6.3.20 VIBE

@inproceedings{VIBE,
author = {Muhammed Kocabas and

Nikos Athanasiou and
Michael J. Black},

title = {{VIBE}: Video Inference for Human Body Pose and Shape Estimation},
booktitle = {CVPR},
year = {2020}

}

For VIBE, please download the preprocessed mpi_inf_3dhp and pw3d npz files from SPIN and pretrained frame feature
extractor spin.pth. Place them in the folder structure below:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

checkpoints
| spin.pth

datasets
vibe_data

mpi_inf_3dhp_train.npz
pw3d_test.npz

6.3.21 FreiHand

@inproceedings{zimmermann2019freihand,
title={Freihand: A dataset for markerless capture of hand pose and shape from single␣

→˓rgb images},
author={Zimmermann, Christian and Ceylan, Duygu and Yang, Jimei and Russell, Bryan and␣

→˓Argus, Max and Brox, Thomas},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={813--822},
year={2019}

}

For FreiHand data, please download from FreiHand Dataset. Extract them under $MMHUMAN3D/data/datasets. Place
them in the folder structure below:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
FreiHand

(continues on next page)

6.3. Folder structure 45

https://github.com/mkocabas/VIBE
https://github.com/nkolot/SPIN/blob/master/fetch_data.sh
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/vibe/spin.pth?versionId=CAEQHhiBgIDrxqbU6xciIGIzOWFkMWYyNzMwMjRhMzBiYzM3NDFiMmVkY2JkZTVh
https://lmb.informatik.uni-freiburg.de/projects/freihand/
https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html

MMHuman3D, Release 0.11.0

(continued from previous page)

| evaluation
| rgb
| 00000000.jpg
| 00000001.jpg
| ...
| training
| rgb
| 00000000.jpg
| 00000001.jpg
| ...
| evaluation_K.json
| evaluation_mano.json
| evaluation_scale.json
| evaluation_verts.json
| evaluation_xyz.json
| training_K.json
| training_mano.json
| training_scale.json
| training_verts.json

training_xyz.json

6.3.22 EHF

@inproceedings{SMPL-X:2019,
title = {Expressive Body Capture: {3D} Hands, Face, and Body from a Single Image},
author = {Pavlakos, Georgios and Choutas, Vasileios and Ghorbani, Nima and Bolkart,␣

→˓Timo and Osman, Ahmed A. A. and Tzionas, Dimitrios and Black, Michael J.},
booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
pages = {10975--10985},
year = {2019}

}

For EHF data, please download from EHF Dataset. Extract them under $MMHUMAN3D/data/datasets. Place them
in the folder structure below:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
EHF
| 01_2Djnt.json
| 01_2Djnt.png
| 01_align.ply
| 01_img.jpg
| 01_img.png
| 01_scan.obj

...

46 Chapter 6. Data preparation

https://smpl-x.is.tue.mpg.de/index.html
https://smpl-x.is.tue.mpg.de/index.html

MMHuman3D, Release 0.11.0

6.3.23 FFHQ

@inproceedings{karras2019style,
title={A style-based generator architecture for generative adversarial networks},
author={Karras, Tero and Laine, Samuli and Aila, Timo},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern␣

→˓recognition},
pages={4401--4410},
year={2019}

}

For FFHQ data, please download from FFHQ Dataset. We present ffhq_annotations.npz by running RingNet on FFHQ
and then fitting to FAN 2D landmarks by flame-fitting. Extract them under $MMHUMAN3D/data/datasets. Place them
in the folder structure below:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
FFHQ
| ffhq_global_images_1024
| 00000.png
| 00001.png
| ...

ffhq_annotations.npz

6.3.24 ExPose

@inproceedings{ExPose:2020,
title = {Monocular Expressive Body Regression through Body-Driven Attention},
author = {Choutas, Vasileios and Pavlakos, Georgios and Bolkart, Timo and Tzionas,␣

→˓Dimitrios and Black, Michael J.},
booktitle = {European Conference on Computer Vision (ECCV)},
pages = {20--40},
year = {2020},
url = {https://expose.is.tue.mpg.de}

}

For ExPose data, please download from Curated Fits Dataset and SPIN IN SMPLX Dataset. Extract them under
$MMHUMAN3D/data/datasets. Place them in the folder structure below:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

(continues on next page)

6.3. Folder structure 47

https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/ffhq-dataset
https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/ffhq_flame_train.npz?versionId=CAEQRBiBgMCT4KzvjhgiIGMwMjFkZWNmMGZlNTQzYjVhMDdhMzA0MTQ1MTBjZDRi
https://ringnet.is.tue.mpg.de/
https://github.com/HavenFeng/photometric_optimization
https://expose.is.tue.mpg.de/
https://psfiles.is.tuebingen.mpg.de/downloads/expose/expose_curated_fits-zip
https://psfiles.is.tuebingen.mpg.de/downloads/expose/spin_in_smplx-zip

MMHuman3D, Release 0.11.0

(continued from previous page)

datasets
| ExPose_curated_fits
| | train.npz
| val.npz

spin_in_smplx
| coco.npz
| lsp.npz
| lspet.npz

mpii.npz

6.3.25 Stirling

@inproceedings{feng2018evaluation,
title={Evaluation of dense 3D reconstruction from 2D face images in the wild},
author={Feng, Zhen-Hua and Huber, Patrik and Kittler, Josef and Hancock, Peter and Wu,␣

→˓Xiao-Jun and Zhao, Qijun and Koppen, Paul and R{\"a}tsch, Matthias},
booktitle={2018 13th IEEE International Conference on Automatic Face \& Gesture␣

→˓Recognition (FG 2018)},
pages={780--786},
year={2018},
organization={IEEE}

}

For Stirling ESRC3D Face data, please download from Stirling ESRC3D Face Dataset. Extract them under
$MMHUMAN3D/data/datasets. Place them in the folder structure below:

mmhuman3d
mmhuman3d
docs
tests
tools
configs
data

datasets
stirling
| annotations
| F_3D_N
| | F1001_N.lnd
| | F1002_N.lnd
| | ...
| M_3D_N
| M1001_N.lnd
| M1002_N.lnd
| ...
| F_3D_N
| F1001_N.obj
| F1002_N.obj
| ...
| M_3D_N
| M1001_N.obj

(continues on next page)

48 Chapter 6. Data preparation

http://pics.psych.stir.ac.uk/ESRC/index.htm
http://pics.psych.stir.ac.uk/ESRC/index.htm

MMHuman3D, Release 0.11.0

(continued from previous page)

| M1002_N.obj
| ...

Subset_2D_FG2018
HQ

| F1001_001.jpg
| F1001_002.jpg
| ...

LQ
F1001_008.jpg
F1001_009.jpg
...

6.3. Folder structure 49

MMHuman3D, Release 0.11.0

50 Chapter 6. Data preparation

CHAPTER

SEVEN

KEYPOINTS CONVENTION

7.1 Overview

Our convention tries to consolidate the different keypoints definition across various commonly used datasets. Due to
differences in data-labelling procedures, keypoints across datasets with the same name might not map to semantically
similar locations on the human body. Conversely, keypoints with different names might correspond to the same location
on the human body. To unify the different keypoints correspondences across datasets, we adopted the human_data
convention as the base convention for converting and storing our keypoints.

7.2 How to use

7.2.1 Converting between conventions

Keypoints can be converted between different conventions easily using the convert_kps function.

To convert a human_data keypoints to coco convention, specify the source and destination convention for conversion.

from mmhuman3d.core.conventions.keypoints_mapping import convert_kps

keypoints_human_data = np.zeros((100, 190, 3))
keypoints_coco, mask = convert_kps(keypoints_human_data, src='human_data', dst='coco')
assert mask.all()==1

The output mask should be all ones if the dst convention is the subset of the src convention. You can use the mask
as the confidence of the keypoints since those keypoints with no correspondence are set to a default value with 0
confidence.

7.2.2 Converting with confidence

If you have confidential information of your keypoints, you can use an original mask to mark it, then the information
will be updated into the returned mask. E.g., you want to convert a smpl keypoints to coco keypoints, and you know
its left_shoulder is occluded. You want to carry forward this information during the converting. So you can set an
original_mask and convert it to coco by doing:

import numpy as np
from mmhuman3d.core.conventions.keypoints_mapping import KEYPOINTS_FACTORY, convert_kps

keypoints = np.zeros((1, len(KEYPOINTS_FACTORY['smpl']), 3))
(continues on next page)

51

MMHuman3D, Release 0.11.0

(continued from previous page)

confidence = np.ones((len(KEYPOINTS_FACTORY['smpl'])))

assume that 'left_shoulder' point is invalid.
confidence[KEYPOINTS_FACTORY['smpl'].index('left_shoulder')] = 0

_, conf_coco = convert_kps(
keypoints=keypoints, confidence=confidence, src='smpl', dst='coco')

_, conf_coco_full = convert_kps(
keypoints=keypoints, src='smpl', dst='coco')

assert conf_coco[KEYPOINTS_FACTORY['coco'].index('left_shoulder')] == 0
conf_coco[KEYPOINTS_FACTORY['coco'].index('left_shoulder')] = 1
assert (conf_coco == conf_coco_full).all()

Our mask represents valid information, its dtype is uint8, while keypoint confidence usually ranges from 0 to 1. E.g.,
you want to convert a smpl keypoints to coco keypoints, and you know its left_shoulder is occluded. You want to
carry forward this information during the converting. So you can set an original_mask and convert it to coco by doing:

confidence = np.ones((len(KEYPOINTS_FACTORY['smpl'])))
confidence[KEYPOINTS_FACTORY['smpl'].index('left_shoulder')] = 0.5
kp_smpl = np.concatenate([kp_smpl, confidence], -1)
kp_smpl_converted, mask = convert_kps(kp_smpl, src='smpl', dst='coco')
new_confidence = kp_smpl_converted[..., 2:]
assert new_confidence[KEYPOINTS_FACTORY['smpl'].index('left_shoulder')] == 0.5

7.3 Supported Conventions

These are the supported conventions:

• AGORA

• COCO

• COCO-WHOLEBODY

• CrowdPose

• GTA-Human

• Human3.6M

• human_data

• HybrIK

• LSP

• MPI-INF-3DHP

• MPII

• openpose

• PennAction

• PoseTrack18

• PW3D

52 Chapter 7. Keypoints convention

MMHuman3D, Release 0.11.0

• SMPL

• SMPL-X

7.3.1 HUMANDATA

The first 144 keypoints in HumanData correspond to that in SMPL-X. Keypoints with suffix _extra refer to those
obtained from Jregressor_extra. Keypoints with suffix _openpose refer to those obtained from OpenPose predictions.

There are several keypoints from MPI-INF-3DHP, Human3.6M and Posetrack that has the same name but were se-
mantically different from keypoints in SMPL-X. As such, we added an extra suffix to differentiate those keypoints i.e.
head_h36m.

7.3.2 AGORA

@inproceedings{Patel:CVPR:2021,
title = {{AGORA}: Avatars in Geography Optimized for Regression Analysis},
author = {Patel, Priyanka and Huang, Chun-Hao P. and Tesch, Joachim and Hoffmann,␣

→˓David T. and Tripathi, Shashank and Black, Michael J.},
booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (

→˓{CVPR})},
month = jun,
year = {2021},
month_numeric = {6}

}

7.3.3 COCO

@inproceedings{lin2014microsoft,
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and␣

→˓Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}

}

7.3.4 COCO-WHOLEBODY

@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian,␣

→˓Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}

}

7.3. Supported Conventions 53

MMHuman3D, Release 0.11.0

7.3.5 CrowdPose

@article{li2018crowdpose,
title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and␣

→˓Lu, Cewu},
journal={Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition ({CVPR}

→˓)},
year={2019}

}

7.3.6 Human3.6M

@article{h36m_pami,
author = {Ionescu, Catalin and Papava, Dragos and Olaru, Vlad and Sminchisescu, ␣

→˓Cristian},
title = {Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing␣

→˓in Natural Environments},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
publisher = {IEEE Computer Society},
volume = {36},
number = {7},
pages = {1325-1339},
month = {jul},
year = {2014}

}

7.3.7 GTA-Human

@article{cai2021playing,
title={Playing for 3D Human Recovery},
author={Cai, Zhongang and Zhang, Mingyuan and Ren, Jiawei and Wei, Chen and Ren,␣

→˓Daxuan and Li, Jiatong and Lin, Zhengyu and Zhao, Haiyu and Yi, Shuai and Yang, Lei␣
→˓and others},
journal={arXiv preprint arXiv:2110.07588},
year={2021}

}

7.3.8 HybrIK

@inproceedings{li2020hybrikg,
author = {Li, Jiefeng and Xu, Chao and Chen, Zhicun and Bian, Siyuan and Yang, Lixin␣

→˓and Lu, Cewu},
title = {HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human␣

→˓Pose and Shape Estimation},
booktitle={CVPR 2021},
pages={3383--3393},
year={2021},

(continues on next page)

54 Chapter 7. Keypoints convention

MMHuman3D, Release 0.11.0

(continued from previous page)

organization={IEEE}
}

7.3.9 LSP

@inproceedings{johnson2010clustered,
title={Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation.},
author={Johnson, Sam and Everingham, Mark},
booktitle={bmvc},
volume={2},
number={4},
pages={5},
year={2010},
organization={Citeseer}

}

7.3.10 MPI-INF-3DHP

@inproceedings{mono-3dhp2017,
author = {Mehta, Dushyant and Rhodin, Helge and Casas, Dan and Fua, Pascal and␣
→˓Sotnychenko, Oleksandr and Xu, Weipeng and Theobalt, Christian},
title = {Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision},
booktitle = {3D Vision (3DV), 2017 Fifth International Conference on},
url = {http://gvv.mpi-inf.mpg.de/3dhp_dataset},
year = {2017},
organization={IEEE},
doi={10.1109/3dv.2017.00064},
}

7.3.11 MPII

@inproceedings{andriluka14cvpr,
author = {Mykhaylo Andriluka and Leonid Pishchulin and Peter Gehler and Schiele, Bernt}

→˓,
title = {2D Human Pose Estimation: New Benchmark and State of the Art Analysis},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2014},
month = {June}

}

7.3. Supported Conventions 55

MMHuman3D, Release 0.11.0

7.3.12 PoseTrack18

@inproceedings{andriluka2018posetrack,
title={Posetrack: A benchmark for human pose estimation and tracking},
author={Andriluka, Mykhaylo and Iqbal, Umar and Insafutdinov, Eldar and Pishchulin,␣

→˓Leonid and Milan, Anton and Gall, Juergen and Schiele, Bernt},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern␣

→˓Recognition},
pages={5167--5176},
year={2018}

}

7.3.13 OpenPose

@article{8765346,
author = {Z. {Cao} and G. {Hidalgo Martinez} and T. {Simon} and S. {Wei} and Y. A.

→˓{Sheikh}},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
title = {OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields}

→˓,
year = {2019}

}

7.3.14 PennAction

@inproceedings{zhang2013,
title={From Actemes to Action: A Strongly-supervised Representation for Detailed␣

→˓Action Understanding},
author={Zhang, Weiyu and Zhu, Menglong and Derpanis, Konstantinos},
booktitle={Proceedings of the International Conference on Computer Vision},
year={2013}

}

7.3.15 SMPL

@article{SMPL:2015,
author = {Loper, Matthew and Mahmood, Naureen and Romero, Javier and Pons-Moll,␣

→˓Gerard and Black, Michael J.},
title = {{SMPL}: A Skinned Multi-Person Linear Model},
journal = {ACM Trans. Graphics (Proc. SIGGRAPH Asia)},
month = oct,
number = {6},
pages = {248:1--248:16},
publisher = {ACM},
volume = {34},
year = {2015}

}

56 Chapter 7. Keypoints convention

MMHuman3D, Release 0.11.0

7.3.16 SMPL-X

@inproceedings{SMPL-X:2019,
title = {Expressive Body Capture: {3D} Hands, Face, and Body from a Single Image},
author = {Pavlakos, Georgios and Choutas, Vasileios and Ghorbani, Nima and Bolkart,␣

→˓Timo and Osman, Ahmed A. A. and Tzionas, Dimitrios and Black, Michael J.},
booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
pages = {10975--10985},
year = {2019}

}

7.3.17 Customizing keypoint convention

Please refer to customize_keypoints_convention.

7.3. Supported Conventions 57

MMHuman3D, Release 0.11.0

58 Chapter 7. Keypoints convention

CHAPTER

EIGHT

CUSTOMIZE KEYPOINTS CONVENTION

8.1 Overview

If your dataset use an unsupported convention, a new convention can be added following this documentation.

These are the conventions that our project currently support:

• agora

• coco

• coco_wholebody

• crowdpose

• h36m

• human_data

• hybrik

• lsp

• mpi_inf_3dhp

• mpii

• openpose

• penn_action

• posetrack

• pw3d

• smpl

• smplx

1. Create a new convention

Please follow mmhuman3d/core/conventions/keypoints_mapping/human_data.py to create a file named
NEW_CONVENTION.py. In this file, NEW_KEYPOINTS is a list containing keypoints naming and order specific to
the new convention.

For instance, if we want to create a new convention for AGORA dataset, agora.py would contain:

AGORA_KEYPOINTS = [
'pelvis',
'left_hip',

(continues on next page)

59

https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/human_data.py

MMHuman3D, Release 0.11.0

(continued from previous page)

'right_hip'
...

]

2. Search for keypoint names in human_data.

In this project, keypoints that share the same naming across datasets should have the exact same semantic definition in
the human body. human_data convention has already consolidated the different keypoints naming and correspondences
across our supported datasets.

For each keypoint in NEW_KEYPOINTS, we have to check (1) if the keypoint name exists in mmhuman3d/core/
conventions/keypoints_mapping/human_data.py and (2) if the keypoint has a correspondence i.e. maps to
the same location as the ones defined in human_data.

If both conditions are met, retain the keypoint name in NEW_CONVENTION.py.

3. Search for keypoints correspondence in human_data.

If a keypoint in NEW_KEYPOINTS shares the same correspondence as a keypoint that is named differently in the
human_data convention i.e. head in NEW_CONVENTION.py maps to head_extra in human_data, rename the
keypoint to follow the new one in our convention i.e. head-> head_extra.

4. Add a new keypoint to human_data

If the keypoint has no correspondence nor share an existing name to the ones defined in human_data, please list it as
well but add a prefix to the original name to differentiate it from those with existing correspondences i.e. spine_3dhp

We may expand human_data to the new keypoint if necessary. However, this can only be done after checking that the
new keypoint do not have a correspondence and there is no conflicting names.

5. Initialise the new set of keypoint convention

Add import for NEW_CONVENTION.py in mmhuman3d/core/conventions/keypoints_mapping/__init__.
py, and add the identifier to dict KEYPOINTS_FACTORY.

For instance, if our new convention is agora:

add import
from mmhuman3d.core.conventions.keypoints_mapping import (

agora,
...

)

add to factory
KEYPOINTS_FACTORY = {

'agora': agora.AGORA_KEYPOINTS,
...

}

6. Using keypoints convention for keypoints mapping

To convert keypoints from any existing convention to your newly defined convention (or vice versa), you can use
the convert_kps function mmhuman3d/core/conventions/keypoints_mapping/__init__.py, which produce
a mask containing 0 or 1 indicating if the corresponding point should be filtered or retained.

To convert from coco to new convention:

new_kps, mask = convert_kps(smplx_keypoints, src='coco', dst='NEW_CONVENTION')

To convert from new convention to human_data:

60 Chapter 8. Customize keypoints convention

https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/human_data.py
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/human_data.py
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/__init__.py#L8-25
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/__init__.py#L8-25
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/__init__.py#L27-52
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/__init__.py

MMHuman3D, Release 0.11.0

new_kps, mask = convert_kps(smplx_keypoints, src='NEW_CONVENTION', dst='human_data')

8.1. Overview 61

MMHuman3D, Release 0.11.0

62 Chapter 8. Customize keypoints convention

CHAPTER

NINE

CAMERAS

9.1 Camera Initialization

We follow Pytorch3D cameras. The camera extrinsic matrix is defined as the camera to world transformation, and
uses right matrix multiplication, whereas the intrinsic matrix uses left matrix multiplication. Nevertheless, our interface
provides opencv convention that defines the camera the same way as an OpenCV camera, would be helpful if you are
more familiar with that.

• Slice cameras:

In mmhuman3d, the recommended way to initialize a camera is by passing K, R, T matrix directly. You can slice
the cameras by index. You can also concat the cameras in batch dim.

from mmhuman3d.core.cameras import PerspectiveCameras
import torch
K = torch.eye(4, 4)[None]
R = torch.eye(3, 3)[None]
T = torch.zeros(100, 3)
Batch of K, R, T should all be the same or some of them could be 1. The final␣
→˓batch size will be the biggest one.
cam = PerspectiveCameras(K=K, R=R, T=T)
assert cam.R.shape == (100, 3, 3)
assert cam.K.shape == (100, 4, 4)
assert cam.T.shape == (100, 3)
assert (cam[:10].K == cam.K[:10]).all()

• Build cameras:

Wrapped by mmcv.Registry. In mmhuman3d, the recommended way to initialize a camera is by passing K, R, T
matrix directly, but you also have the options to pass focal_length and principle_point as the input.

Take the usually used PerspectiveCameras as examples. If K, R, T are not specified, the K will use de-
fault K by compute_default_projection_matrix with default focal_length and principal_point
and R will be identical matrix, T will be zeros. You can also specify by overwriting the parameters for
compute_default_projection_matrix.

from mmhuman3d.core.cameras import build_cameras

Initialize a perspective camera with given K, R, T matrix.
It is recommended that the batches of K, R, T either the same or be 1.
K = torch.eye(4, 4)[None]
R = torch.eye(3, 3)[None]
T = torch.zeros(10, 3)

(continues on next page)

63

MMHuman3D, Release 0.11.0

(continued from previous page)

height, width = 1000
cam1 = build_cameras(

dict(
type='PerspectiveCameras',
K=K,
R=R,
T=T,
in_ndc=True,
image_size=(height, width),
convention='opencv',
))

This is the same as:
cam2 = PerspectiveCameras(

K=K,
R=R,
T=T,
in_ndc=True,
image_size=1000, # single number represents square images.
convention='opencv',
)

assert cam1.K.shape == cam2.K.shape == (10, 4, 4)
assert cam1.R.shape == cam2.R.shape == (10, 3, 3)
assert cam1.T.shape == cam2.T.shape == (10, 3)

Initialize a perspective camera with specific `image_size`, `principal_points`,␣
→˓`focal_length`.
`in_ndc = False` means the intrinsic matrix `K` defined in screen space. The `focal_
→˓length` and `principal_point` in `K` is defined in scale of pixels. This `principal_
→˓points` is (500, 500) pixels and `focal_length` is 1000 pixels.
cam = build_cameras(

dict(
type='PerspectiveCameras',
in_ndc=False,
image_size=(1000, 1000),
principal_points=(500, 500),
focal_length=1000,
convention='opencv',
))

assert (cam.K[0] == torch.Tensor([[1000., 0., 500., 0.],
[0., 1000., 500., 0.],
[0., 0., 0., 1.],
[0., 0., 1., 0.]]).view(4, 4)).all()

Initialize a weakperspective camera with given K, R, T. weakperspective camera␣
→˓support `in_ndc = True` only.
cam = build_cameras(

dict(
type='WeakPerspectiveCameras',
K=K,

(continues on next page)

64 Chapter 9. Cameras

MMHuman3D, Release 0.11.0

(continued from previous page)

R=R,
T=T,
image_size=(1000, 1000)
))

If no `K`, `R`, `T` information provided
Initialize a `in_ndc` perspective camera with default matrix.
cam = build_cameras(

dict(
type='PerspectiveCameras',
in_ndc=True,
image_size=(1000, 1000),
))

Then convert it to screen. This operation requires `image_size`.
cam.to_screen_()

9.2 Camera Projection Matrixs

• Perspective:

format of intrinsic matrix: fx, fy is focal_length, px, py is principal_point.

K = [
[fx, 0, px, 0],
[0, fy, py, 0],
[0, 0, 0, 1],
[0, 0, 1, 0],

]

Detailed information refer to Pytorch3D.

• WeakPerspective:

format of intrinsic matrix:

K = [
[sx*r, 0, 0, tx*sx*r],
[0, sy, 0, ty*sy],
[0, 0, 1, 0],
[0, 0, 0, 1],

]

WeakPerspectiveCameras is orthographics indeed, mainly for SMPL(x) projection. Detailed information refer
to mmhuman3d cameras. This can be converted from SMPL predicted camera parameter by:

from mmhuman3d.core.cameras import WeakPerspectiveCameras
K = WeakPerspectiveCameras.convert_orig_cam_to_matrix(orig_cam)

The pred_cam is array/tensor of shape (frame, 4) consists of [scale_x, scale_y, transl_x, transl_y]. See in VIBE.

• FoVPerspective:

9.2. Camera Projection Matrixs 65

https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/renderer/cameras.py#L895
https://github.com/mkocabas/VIBE/blob/master/lib/utils/renderer.py#L40-L47

MMHuman3D, Release 0.11.0

format of intrinsic matrix:
K = [

[s1, 0, w1, 0],
[0, s2, h1, 0],
[0, 0, f1, f2],
[0, 0, 1, 0],

]

s1, s2, w1, h1, f1, f2 are defined by FoV parameters (fov, znear, zfar, etc.), detailed information refer to
Pytorch3D.

• Orthographics:

format of intrinsic matrix:

K = [
[fx, 0, 0, px],
[0, fy, 0, py],
[0, 0, 1, 0],
[0, 0, 0, 1],

]

Detailed information refer to Pytorch3D.

• FoVOrthographics:

K = [
[scale_x, 0, 0, -mid_x],
[0, scale_y, 0, -mix_y],
[0, 0, -scale_z, -mid_z],
[0, 0, 0, 1],

]

scale_x, scale_y, scale_z, mid_x, mid_y, mid_z are defined by FoV parameters(min_x, min_y, max_x, max_y,
znear, zfar, etc.), related information refer to Pytorch3D.

9.3 Camera Conventions

• Convert between different cameras:

We name intrinsic matrix as K, rotation matrix as R and translation matrix as T. Different camera conventions have
different axis directions, and some use left matrix multiplication and some use right matrix multiplication. Intrin-
sic and extrinsic matrix should be of the same multiplication convention, but some conventions like Pytorch3D
uses right matrix multiplication in computation procedure but passes left matrix multiplication K when initializ-
ing the cameras(mainly for better understanding). Conversion between NDC (normalized device coordinate) and
screen also influence the intrinsic matrix, this is independent of camera conventions but should also be included.
If you want to use an existing convention, choose in ['opengl', 'opencv', 'pytorch3d', 'pyrender',
'open3d']. E.g., you want to convert your opencv calibrated camera to Pytorch3D NDC defined camera for
rendering, you can do:

from mmhuman3d.core.conventions.cameras import convert_cameras
import torch

(continues on next page)

66 Chapter 9. Cameras

https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/renderer/cameras.py
https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/renderer/cameras.py
https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/renderer/cameras.py

MMHuman3D, Release 0.11.0

(continued from previous page)

K = torch.eye(4, 4)[None]
R = torch.eye(3, 3)[None]
T = torch.zeros(10, 3)
height, width = 1080, 1920
K, R, T = convert_cameras(

K=K,
R=R,
T=T,
in_ndc_src=False,
in_ndc_dst=True,
resolution_src=(height, width),
convention_src='opencv',
convention_dst='pytorch3d')

Input K could be None, or array/tensor of shape (batch_size, 3, 3) or (batch_size, 4, 4). Input R could be None,
or array/tensor of shape (batch_size, 3, 3). Input T could be None, or array/tensor of shape (batch_size,
3). If the original K is None, it will remain None. If the original R is None, it will be set as identity matrix. If the
original T is None, it will be set as zeros matrix. Please refer to Pytorch3D for more information about cameras
in NDC and in screen space..

• Define your new camera convention:

If want to use a new convention, define your convention in CAMERA_CONVENTION_FACTORY by the order
of right to, up to, and off screen. E.g., the first one is pyrender and its convention should be ‘+x+y+z’. ‘+’ could
be ignored. The second one is opencv and its convention should be ‘+x-y-z’. The third one is Pytorch3D and its
convention should be ‘-xyz’.

OpenGL(PyRender) OpenCV Pytorch3D
y z y
| / |
| / |
|_______x /________x x________ |
/ | /
/ | /

z / y | z /

9.4 Some Conversion Functions

Convert functions are also defined in conventions.cameras.

• NDC & screen:

from mmhuman3d.core.conventions.cameras import (convert_ndc_to_screen,
convert_screen_to_ndc)

K = convert_ndc_to_screen(K, resolution=(1080, 1920), is_perspective=True)
K = convert_screen_to_ndc(K, resolution=(1080, 1920), is_perspective=True)

• 3x3 & 4x4 intrinsic matrix

from mmhuman3d.core.conventions.cameras import (convert_K_3x3_to_4x4,
convert_K_4x4_to_3x3)

(continues on next page)

9.4. Some Conversion Functions 67

https://github.com/facebookresearch/pytorch3d/blob/main/docs/notes/cameras.md
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/cameras/__init__.py

MMHuman3D, Release 0.11.0

(continued from previous page)

K = convert_K_3x3_to_4x4(K, is_perspective=True)
K = convert_K_4x4_to_3x3(K, is_perspective=True)

• world & view:

Convert between world & view coordinates.

from mmhuman3d.core.conventions.cameras import convert_world_view
R, T = convert_world_view(R, T)

• weakperspective & perspective:

Convert between weakperspective & perspective. zmean is needed. WeakperspectiveCameras is in_ndc, so you
should pass resolution if perspective not in ndc.

from mmhuman3d.core.conventions.cameras import (
convert_perspective_to_weakperspective,
convert_weakperspective_to_perspective)

K = convert_perspective_to_weakperspective(
K, zmean, in_ndc=False, resolution, convention='opencv')

K = convert_weakperspective_to_perspective(
K, zmean, in_ndc=False, resolution, convention='pytorch3d')

9.5 Some Compute Functions

• Project 3D coordinates to screen:

points_xydepth = cameras.transform_points_screen(points)
points_xy = points_xydepth[..., :2]

• Compute depth of points:

You can simply convert points to the view coordinates and get the z value as depth. Example could be found in
DepthRenderer.

points_depth = cameras.compute_depth_of_points(points)

• Compute normal of meshes:

Use Pytorch3D to compute normal of meshes. Example could be found in NormalRenderer.

normals = cameras.compute_normal_of_meshes(meshes)

• Get camera plane normal:

Get the normalized normal tensor which points out of the camera plane from camera center.

normals = cameras.get_camera_plane_normals()

68 Chapter 9. Cameras

https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/renderer/torch3d_renderer/depth_renderer.py
https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/renderer/torch3d_renderer/normal_renderer.py

CHAPTER

TEN

VISUALIZE KEYPOINTS

10.1 Visualize 2d keypoints

• simple example for visualize 2d keypoints:

You have 2d coco_wholebody keypoints of shape(10, 133, 2).

from mmhuman3d.core.visualization.visualize_keypoints2d import visualize_kp2d

visualize_kp2d(
kp2d_coco_wholebody,
data_source='coco_wholebody',
output_path='some_video.mp4',
resolution=(1024, 1024))

Then a 1024x1024 sized video with 10 frames would be save as ‘some_video.mp4’

• data_source and mask:

If your keypoints have some nonsense points, you should provide the mask. data_source is mainly used to
search the limb connections and palettes. You should specify the data_source if you dataset is in convention.
E.g., convert coco_wholebody keypoints to the convention of smpl and visualize it:

from mmhuman3d.core.conventions.keypoints_mapping import convert_kps
from mmhuman3d.core.visualization.visualize_keypoints2d import visualize_kp2d

kp2d_smpl, mask = convert_kps(kp2d_coco_wholebody, src='coco_wholebody', dst='smpl')
visualize_kp2d(

kp2d_smpl,
mask=mask,
output_path='some_video.mp4',
resolution=(1024, 1024))

mask is None by default. This is the same as all ones mask, then no keypoints will be excluded. Ignore it when
you are sure that all the keypoints are valid.

• whether plot on backgrounds:

Maybe you want to use numpy input backgrounds.

E.g., you want to visualize you coco_wholebody kp2d as smpl convention. You have 2d coco_wholebody key-
points of shape(10, 133, 2).

69

https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/

MMHuman3D, Release 0.11.0

from mmhuman3d.core.conventions.keypoints_mapping import convert_kps
from mmhuman3d.core.visualization.visualize_keypoints2d import visualize_kp2d

background = np.random.randint(low=0, high=255, shape=(10, 1024, 1024, 4))
multi_person, shape is (num_person, num_joints, 2)
out_image = visualize_kp2d(

kp2d=kp2d, image_array=background, data_source='coco_wholebody', return_
→˓array=True)

This is just an example, you can use this function flexibly.

If want to plot keypoints on frame files, you could provide frame_list(list of image path). Be aware that the
order of the frame will be sorted by name. or origin_frames(mp4 path or image folder path), Be aware
that you should provide the correct img_format for ffmpeg to read the images..

frame_list = ['im1.png', 'im2.png', ...]
visualize_kp2d(

kp2d_coco_wholebody,
data_source='coco_wholebody',
output_path='some_video.mp4',
resolution=(1024, 1024),
frame_list=frame_list)

origin_frames = 'some_folder'
visualize_kp2d(

kp2d_coco_wholebody,
data_source='coco_wholebody',
output_path='some_video.mp4',
resolution=(1024, 1024),
origin_frames=origin_frames)

origin_frames = 'some.mp4'
array = visualize_kp2d(

kp2d_coco_wholebody,
data_source='coco_wholebody',
output_path='some_video.mp4',
resolution=(1024, 1024),
return_array=True,
origin_frames=origin_frames)

The superiorty of background images: frame_list

• output a video or frames:

If output_path is a folder, this function will output frames. If output_path is a ‘.mp4’ path, this function
will output a video. output_path could be set as None when return_array is True. The function will return
an array of shape (frame, width, height, 3).

• whether plot origin file name on images:

Specify with_file_name=True then origin frame name will be plotted on the image.

• dataset not in existing convention or want to visualize some specific limbs:

You should provide limbs like limbs=[[0, 1], ..., [10, 11]] if you dataset is not in convention.

70 Chapter 10. Visualize Keypoints

https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/core/conventions/keypoints_mapping/

MMHuman3D, Release 0.11.0

• other parameters:

Easy to understand, please read the doc strings in the function.

10.2 Visualize 3d keypoints

• simple example for visualize single person:

You have kp3d in smplx convention of shape (num_frame, 144, 3).

visualize_kp3d(kp3d=kp3d, data_source='smplx', output_path='some_video.mp4')

The result video would have one person dancing, each body part has its own color.

• simple example for visualize multi person:

You have kp3d_1 and kp3d_2 which are both in smplx convention of shape (num_frame, 144, 3).

kp3d = np.concatenate([kp3d_1[:, np.newaxis], kp3d_2[:, np.newaxis]], axis=1)
kp3d.shape is now (num_frame, num_person, 144, 3)
visualize_kp3d(kp3d=kp3d, data_source='smplx', output_path='some_video.mp4')

The result video would have two person dancing, each in a pure color, and the there will be a color legend
describing the index of each person.

• data_source and mask:

The same as visualize_kp2d

• dataset not in existing convention or want to visualize some specific limbs:

The same as visualize_kp2d

• output: If output_path is a folder, this function will output frames. If output_path is a ‘.mp4’ path, this
function will output a video. output_path could be set as None when return_array is True. The function
will return an array of shape (frame, width, height, 3).

• other parameters:

Easy to understand, please read the doc strings in the function.

10.3 About ffmpeg_utils

• In ffmpeg_utils , each function has abundant doc strings, and the semantically defined function names could be
easily understood.

• read files:

images_to_array, video_to_array

• write files:

array_to_images, array_to_video

• convert formats:

gif_to_images, gif_to_video, video_to_images, video_to_gif, images_to_gif, images_to_video

• temporally crop/concat:

slice_video, temporal_concat_video

10.2. Visualize 3d keypoints 71

https://github.com/open-mmlab/mmhuman3d/tree/main/mmhuman3d/utils/ffmpeg_utils.py

MMHuman3D, Release 0.11.0

• spatially crop/concat:

crop_video, spatial_concat_video

• compress:

compress_gif, compress_video

72 Chapter 10. Visualize Keypoints

CHAPTER

ELEVEN

VISUALIZE SMPL MESH

• fast visualize smpl(x) pose without background images:

You have smpl pose tensor or array shape of which is (frame, 72)

from mmhuman3d.core.visualization.visualize_smpl import visualize_smpl_pose
body_model_config = dict(

type='smpl', model_path=model_path)
visualize_smpl_pose(

poses=poses,
output_path='smpl.mp4',
resolution=(1024, 1024))

Or you have smplx pose tensor or array shape of which is (frame, 165)

body_model_config = dict(
type='smplx', model_path=model_path)

visualize_smpl_pose(
poses=poses,
body_model_config=body_model_config,
output_path='smplx.mp4',
resolution=(1024, 1024))

You could also feed dict tensor of smplx definitions. You could check that in visualize_smpl or original smplx.

• visualize T-pose: If you want to visualize a T-pose smpl or your poses do not have global_orient, you can do:

import torch
from mmhuman3d.core.visualization.visualize_smpl import visualize_T_pose
body_model_config = dict(

type='smpl', model_path=model_path)
visualize_T_pose(

num_frames=100,
body_model_config=body_model_config,
output_path='smpl_tpose.mp4',
orbit_speed=(1, 0.5),
resolution=(1024, 1024))

• visualize smpl with predicted VIBE camera: You have poses (numpy/tensor) of shape (frame, 72), betas of
shape (frame, 10), pred_cam of shape (10, 4). E.g., we use vibe sample_video.mp4 as an example.

import pickle
from mmhuman3d.core.visualization.visualize_smpl import visualize_smpl_vibe

(continues on next page)

73

https://github.com/vchoutas/smplx/blob/master/smplx/body_models.py

MMHuman3D, Release 0.11.0

(continued from previous page)

with open('vibe_output.pkl', 'rb') as f:
d = pickle.load(f, encoding='latin1')

poses = d[1]['pose']
orig_cam = d[1]['orig_cam']
pred_cam = d[1]['pred_cam']
bbox = d[1]['bboxes']
gender = 'female'

pass pred_cam & bbox
body_model_config = dict(

type='smpl', model_path=model_path, gender=gender)
visualize_smpl_vibe(

poses=poses,
betas=betas,
body_model_config=body_model_config,
pred_cam=pred_cam,
bbox=bbox,
output_path='vibe_demo.mp4',
origin_frames='sample_video.mp4',
resolution=(1024, 1024))

or pass orig_cam
body_model_config = dict(

type='smpl', model_path=model_path, gender=gender)
visualize_smpl_vibe(

poses=poses,
betas=betas,
body_model_config=body_model_config,
orig_cam=orig_cam,
output_path='vibe_demo.mp4',
origin_frames='sample_video.mp4',
resolution=(1024, 1024))

• visualize smpl with predicted HMR/SPIN camera: You have poses (numpy/tensor) of shape (frame, 72), betas
of shape (frame, 10), cam_translation of shape (10, 4). E.g., we use vibe sample_video.mp4 as an example.

import pickle
from mmhuman3d.core.visualization.visualize_smpl import visualize_smpl_hmr
gender = 'female'
focal_length = 5000
det_width = 224
det_height = 224

you can pass smpl poses & betas & gender
body_model_config = dict(

type='smpl', model_path=model_path, gender=gender)
visualize_smpl_hmr(

poses=poses,
betas=betas,
bbox=bbox,
body_model_config=body_model_config,

(continues on next page)

74 Chapter 11. Visualize SMPL Mesh

MMHuman3D, Release 0.11.0

(continued from previous page)

focal_length=focal_length,
det_width=det_width,
det_height=det_height,
T=cam_translation,
output_path='hmr_demo.mp4',
origin_frames=image_folder,
resolution=(1024, 1024))

or you can pass verts
body_model_config = dict(

type='smpl', model_path=model_path, gender=gender)
visualize_smpl_hmr(

verts=verts,
bbox=bbox,
focal_length=focal_length,
body_model_config=body_model_config,
det_width=det_width,
det_height=det_height,
T=cam_translation,
output_path='hmr_demo.mp4',
origin_frames=image_folder,
resolution=(1024, 1024))

you can also pass kp2d in replace of bbox.
body_model_config = dict(

type='smpl', model_path=model_path, gender=gender)
visualize_smpl_hmr(

verts=verts,
body_model_config=body_model_config,
kp2d=kp2d,
focal_length=focal_length,
det_width=det_width,
det_height=det_height,
T=cam_translation,
output_path='hmr_demo.mp4',
origin_frames=image_folder,
resolution=(1024, 1024))

• visualize smpl with opencv camera: You should pass the opencv defined intrinsic matrix K and extrinsic matrix
R, T.

from mmhuman3d.core.visualization.visualize_smpl import visualize_smpl_calibration
body_model_config = dict(

type='smpl', model_path=model_path, gender=gender)
visualize_smpl_calibration(

poses=poses,
betas=betas,
transl=transl,
body_model_config=body_model_config,
K=K,
R=R,
T=T,

(continues on next page)

75

MMHuman3D, Release 0.11.0

(continued from previous page)

output_path='opencv.mp4',
origin_frames='bg_video.mp4',
resolution=(1024, 1024))

11.1 Different render_choice:

• visualize mesh: This is independent of cameras and you could directly set render_choice as hq(high quality),
mq(medium quality) or lq(low quality).

• visualize binary silhouettes: This is independent of cameras and you could directly set render_choice as
silhouette. The output video/images will be binary masks.

• visualize body part silhouette: This is independent of cameras and you could directly set render_choice as
part_silhouette. The output video/images will be body part segmentation masks.

• visualize depth map: This is independent of cameras and you could directly set render_choice as depth.
The output video/images will be gray depth maps.

• visualize normal map: This is independent of cameras and you could directly set render_choice as normal.
The output video/images will be colorful normal maps.

• visualize point clouds: This is independent of cameras and you could directly set render_choice as
pointcloud. The output video/images will be point clouds with keypoints.

• Choose your color: Set palette as ‘white’, ‘black’, ‘blue’, ‘green’, ‘red’, ‘yellow’, and pass a list of string with
the length of num_person. Or send a numpy.ndarray of shape (num_person, 3). Should be normalized color:
(1.0, 1.0, 1.0) represents white. The color channel is RGB.

• Differentiable render: Set no_grad=False and return_tensor=True.

11.2 Important parameters:

• background images: You could pass image_array(numpy.ndarray of shape (frame, h, w, 3)) or
frame_list(list of paths of images(.png or .jpg)) or origin_frames(str of video path or image folder path).
The priority order is image_array > frame_list > origin_frames. If the background images are too big,
you should set read_frames_batch as True to relieve the IO burden. This will be done automatically in the
code when you number of frame is large than 500.

• smpl pose & verts: There area two ways to pass smpl mesh information: 1). You pass poses, betas(optional)
and transl(optional) and gender(optional). 2). You pass verts directly and the above three will be ignored.
The body_model or model_path is still required if you passverts since we need to get the faces. The priority
order is verts > (poses & betas & transl & gender). Check the docstring for details. 3). for multi-
person, you should have an extra dim for num_person. E.g., shape of smpl verts should be (num_frame,
num_person, 6890, 3), shape of smpl poses should be (num_frame, num_person, 72), shape of smpl betas
should be (num_frame, num_person, 10), shape of vibe pred_cam should be (num_frame, num_person, 3).
This doesn’t have influence on K, R, T since they are for every frame.

• body model: There are two ways to pass body model: 1). You pass a dict body_model_config which con-
taining the same configs as build_body_model 2). You pass body_model directly and the above three will be
ignored. The priority order is body_model > (model_path & model_type & gender). Check the docstring
for details.

• output path: Output_path could be None or str of video path or str of image folder path. 1). If None, no
output file will be wrote. 2). If a video path like xxx.mp4, a video file will be wrote. Make sure you have enough

76 Chapter 11. Visualize SMPL Mesh

MMHuman3D, Release 0.11.0

space for temporal images. The images will be removed automatically. 3). If a image folder path like xxx/, a
folder will be created and the images will be wrote into it.

11.2. Important parameters: 77

MMHuman3D, Release 0.11.0

78 Chapter 11. Visualize SMPL Mesh

CHAPTER

TWELVE

ADDITIONAL LICENSES

We would like to pay tribute to open-source implementations to which we make reference. Note that they may carry
additional license requiresments.

12.1 SMPLify-X

License

Software Copyright License for non-commercial scientific research purposes Please read carefully the following terms
and conditions and any accompanying documentation before you download and/or use the SMPL-X/SMPLify-X model,
data and software, (the “Model & Software”), including 3D meshes, blend weights, blend shapes, textures, software,
scripts, and animations. By downloading and/or using the Model & Software (including downloading, cloning, in-
stalling, and any other use of this github repository), you acknowledge that you have read these terms and conditions,
understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must
not download and/or use the Model & Software. Any infringement of the terms of this agreement will automatically
terminate your rights under this License

Ownership / Licensees The Software and the associated materials has been developed at the

Max Planck Institute for Intelligent Systems (hereinafter “MPI”).

Any copyright or patent right is owned by and proprietary material of the

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (hereinafter “MPG”; MPI and MPG hereinafter col-
lectively “Max-Planck”)

hereinafter the “Licensor”.

License Grant Licensor grants you (Licensee) personally a single-user, non-exclusive, non-transferable, free of charge
right:

To install the Model & Software on computers owned, leased or otherwise controlled by you and/or your organization;
To use the Model & Software for the sole purpose of performing non-commercial scientific research, non-commercial
education, or non-commercial artistic projects; Any other use, in particular any use for commercial, pornographic,
military, or surveillance, purposes is prohibited. This includes, without limitation, incorporation in a commercial
product, use in a commercial service, or production of other artifacts for commercial purposes. The Data & Software
may not be used to create fake, libelous, misleading, or defamatory content of any kind excluding analyses in peer-
reviewed scientific research. The Data & Software may not be reproduced, modified and/or made available in any form
to any third party without Max-Planck’s prior written permission.

The Data & Software may not be used for pornographic purposes or to generate pornographic material whether com-
mercial or not. This license also prohibits the use of the Software to train methods/algorithms/neural networks/etc.
for commercial, pornographic, military, surveillance, or defamatory use of any kind. By downloading the Data &
Software, you agree not to reverse engineer it.

79

MMHuman3D, Release 0.11.0

No Distribution The Model & Software and the license herein granted shall not be copied, shared, distributed, re-
sold, offered for re-sale, transferred or sub-licensed in whole or in part except that you may make one copy for archive
purposes only.

Disclaimer of Representations and Warranties You expressly acknowledge and agree that the Model & Software results
from basic research, is provided “AS IS”, may contain errors, and that any use of the Model & Software is at your
sole risk. LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE MODEL & SOFTWARE, NEITHER EXPRESS NOR IMPLIED, AND THE ABSENCE OF ANY LEGAL OR
ACTUAL DEFECTS, WHETHER DISCOVERABLE OR NOT. Specifically, and not to limit the foregoing, licensor
makes no representations or warranties (i) regarding the merchantability or fitness for a particular purpose of the Model
& Software, (ii) that the use of the Model & Software will not infringe any patents, copyrights or other intellectual
property rights of a third party, and (iii) that the use of the Model & Software will not cause any damage of any kind
to you or a third party.

Limitation of Liability Because this Model & Software License Agreement qualifies as a donation, according to Section
521 of the German Civil Code (Bürgerliches Gesetzbuch – BGB) Licensor as a donor is liable for intent and gross
negligence only. If the Licensor fraudulently conceals a legal or material defect, they are obliged to compensate the
Licensee for the resulting damage. Licensor shall be liable for loss of data only up to the amount of typical recovery
costs which would have arisen had proper and regular data backup measures been taken. For the avoidance of doubt
Licensor shall be liable in accordance with the German Product Liability Act in the event of product liability. The
foregoing applies also to Licensor’s legal representatives or assistants in performance. Any further liability shall be
excluded. Patent claims generated through the usage of the Model & Software cannot be directed towards the copyright
holders. The Model & Software is provided in the state of development the licensor defines. If modified or extended
by Licensee, the Licensor makes no claims about the fitness of the Model & Software and is not responsible for any
problems such modifications cause.

No Maintenance Services You understand and agree that Licensor is under no obligation to provide either maintenance
services, update services, notices of latent defects, or corrections of defects with regard to the Model & Software.
Licensor nevertheless reserves the right to update, modify, or discontinue the Model & Software at any time.

Defects of the Model & Software must be notified in writing to the Licensor with a comprehensible description of the
error symptoms. The notification of the defect should enable the reproduction of the error. The Licensee is encouraged
to communicate any use, results, modification or publication.

Publications using the Model & Software You acknowledge that the Model & Software is a valuable scientific resource
and agree to appropriately reference the following paper in any publication making use of the Model & Software.

Citation:

@inproceedings{SMPL-X:2019, title = {Expressive Body Capture: 3D Hands, Face, and Body from a Single Image},
author = {Pavlakos, Georgios and Choutas, Vasileios and Ghorbani, Nima and Bolkart, Timo and Osman, Ahmed A. A.
and Tzionas, Dimitrios and Black, Michael J.}, booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR)}, year = {2019} } Commercial licensing opportunities For commercial uses of the Software,
please send email to ps-license@tue.mpg.de

This Agreement shall be governed by the laws of the Federal Republic of Germany except for the UN Sales Convention.

12.2 VIBE

License

Software Copyright License for non-commercial scientific research purposes Please read carefully the following terms
and conditions and any accompanying documentation before you download and/or use the VIBE model, data and soft-
ware, (the “Model & Software”), including 3D meshes, software, and scripts. By downloading and/or using the Model
& Software (including downloading, cloning, installing, and any other use of this github repository), you acknowledge
that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree

80 Chapter 12. Additional Licenses

MMHuman3D, Release 0.11.0

with these terms and conditions, you must not download and/or use the Model & Software. Any infringement of the
terms of this agreement will automatically terminate your rights under this License

Ownership / Licensees The Software and the associated materials has been developed at the

Max Planck Institute for Intelligent Systems (hereinafter “MPI”).

Any copyright or patent right is owned by and proprietary material of the

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (hereinafter “MPG”; MPI and MPG hereinafter col-
lectively “Max-Planck”)

hereinafter the “Licensor”.

This software includes the SMPL Body Model. By downloading this software, you are agreeing to be bound by the
terms of the SMPL Model License

https://smpl.is.tue.mpg.de/modellicense

which is necessary to create SMPL body models.

SMPL bodies that are generated with VIBE can be distributed freely under the SMPL Body License

https://smpl.is.tue.mpg.de/bodylicense

License Grant Licensor grants you (Licensee) personally a single-user, non-exclusive, non-transferable, free of charge
right:

To install the Model & Software on computers owned, leased or otherwise controlled by you and/or your organization;
To use the Model & Software for the sole purpose of performing non-commercial scientific research, non-commercial
education, or non-commercial artistic projects; Any other use, in particular any use for commercial purposes, is pro-
hibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or
production of other artifacts for commercial purposes. The Model & Software may not be reproduced, modified and/or
made available in any form to any third party without Max-Planck’s prior written permission.

The Model & Software may not be used for pornographic purposes or to generate pornographic material whether
commercial or not. This license also prohibits the use of the Model & Software to train methods/algorithms/neural
networks/etc. for commercial use of any kind. By downloading the Model & Software, you agree not to reverse
engineer it.

No Distribution The Model & Software and the license herein granted shall not be copied, shared, distributed, re-
sold, offered for re-sale, transferred or sub-licensed in whole or in part except that you may make one copy for archive
purposes only.

Disclaimer of Representations and Warranties You expressly acknowledge and agree that the Model & Software results
from basic research, is provided “AS IS”, may contain errors, and that any use of the Model & Software is at your
sole risk. LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE MODEL & SOFTWARE, NEITHER EXPRESS NOR IMPLIED, AND THE ABSENCE OF ANY LEGAL OR
ACTUAL DEFECTS, WHETHER DISCOVERABLE OR NOT. Specifically, and not to limit the foregoing, licensor
makes no representations or warranties (i) regarding the merchantability or fitness for a particular purpose of the Model
& Software, (ii) that the use of the Model & Software will not infringe any patents, copyrights or other intellectual
property rights of a third party, and (iii) that the use of the Model & Software will not cause any damage of any kind
to you or a third party.

Limitation of Liability Because this Model & Software License Agreement qualifies as a donation, according to Section
521 of the German Civil Code (Bürgerliches Gesetzbuch – BGB) Licensor as a donor is liable for intent and gross
negligence only. If the Licensor fraudulently conceals a legal or material defect, they are obliged to compensate the
Licensee for the resulting damage.

Licensor shall be liable for loss of data only up to the amount of typical recovery costs which would have arisen had
proper and regular data backup measures been taken. For the avoidance of doubt Licensor shall be liable in accordance

12.2. VIBE 81

MMHuman3D, Release 0.11.0

with the German Product Liability Act in the event of product liability. The foregoing applies also to Licensor’s legal
representatives or assistants in performance. Any further liability shall be excluded. Patent claims generated through
the usage of the Model & Software cannot be directed towards the copyright holders. The Model & Software is provided
in the state of development the licensor defines. If modified or extended by Licensee, the Licensor makes no claims
about the fitness of the Model & Software and is not responsible for any problems such modifications cause.

No Maintenance Services You understand and agree that Licensor is under no obligation to provide either maintenance
services, update services, notices of latent defects, or corrections of defects with regard to the Model & Software.
Licensor nevertheless reserves the right to update, modify, or discontinue the Model & Software at any time.

Defects of the Model & Software must be notified in writing to the Licensor with a comprehensible description of the
error symptoms. The notification of the defect should enable the reproduction of the error. The Licensee is encouraged
to communicate any use, results, modification or publication.

Publications using the Model & Software You acknowledge that the Model & Software is a valuable scientific resource
and agree to appropriately reference the following paper in any publication making use of the Model & Software.

Citation:

@inproceedings{VIBE:CVPR:2020, title = {{VIBE}: Video Inference for Human Body Pose and Shape Estimation},
author = {Kocabas, Muhammed and Athanasiou, Nikos and Black, Michael J.}, booktitle = {Computer Vision and
Pattern Recognition (CVPR)}, month = jun, year = {2020}, month_numeric = {6} }

Commercial licensing opportunities For commercial uses of the Software, please send email to ps-license@tue.mpg.de

This Agreement shall be governed by the laws of the Federal Republic of Germany except for the UN Sales Convention.

12.3 SPIN

Copyright (c) 2019, University of Pennsylvania, Max Planck Institute for Intelligent Systems All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

82 Chapter 12. Additional Licenses

MMHuman3D, Release 0.11.0

12.4 PARE

License

Software Copyright License for non-commercial scientific research purposes Please read carefully the following terms
and conditions and any accompanying documentation before you download and/or use the PARE model, data and soft-
ware, (the “Model & Software”), including 3D meshes, software, and scripts. By downloading and/or using the Model
& Software (including downloading, cloning, installing, and any other use of this github repository), you acknowledge
that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree
with these terms and conditions, you must not download and/or use the Model & Software. Any infringement of the
terms of this agreement will automatically terminate your rights under this License

Ownership / Licensees The Model & Software and the associated materials has been developed at the

Max Planck Institute for Intelligent Systems (hereinafter “MPI”).

Any copyright or patent right is owned by and proprietary material of the

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (hereinafter “MPG”; MPI and MPG hereinafter col-
lectively “Max-Planck”)

hereinafter the “Licensor”.

This software includes the SMPL Body Model. By downloading this software, you are agreeing to be bound by the
terms of the SMPL Model License

https://smpl.is.tue.mpg.de/modellicense

which is necessary to create SMPL body models.

SMPL bodies that are generated with PARE can be distributed freely under the SMPL Body License

https://smpl.is.tue.mpg.de/bodylicense

License Grant Licensor grants you (Licensee) personally a single-user, non-exclusive, non-transferable, free of charge
right:

To install the Model & Software on computers owned, leased or otherwise controlled by you and/or your organization;
To use the Model & Software for the sole purpose of performing non-commercial scientific research, non-commercial
education, or non-commercial artistic projects; Any other use, in particular any use for commercial purposes, is pro-
hibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or
production of other artifacts for commercial purposes. The Model & Software may not be reproduced, modified and/or
made available in any form to any third party without Max-Planck’s prior written permission.

The Model & Software may not be used for pornographic purposes or to generate pornographic material whether
commercial or not. This license also prohibits the use of the Model & Software to train methods/algorithms/neural
networks/etc. for commercial use of any kind. By downloading the Model & Software, you agree not to reverse
engineer it.

No Distribution The Model & Software and the license herein granted shall not be copied, shared, distributed, re-
sold, offered for re-sale, transferred or sub-licensed in whole or in part except that you may make one copy for archive
purposes only.

Disclaimer of Representations and Warranties You expressly acknowledge and agree that the Model & Software results
from basic research, is provided “AS IS”, may contain errors, and that any use of the Model & Software is at your
sole risk. LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE MODEL & SOFTWARE, NEITHER EXPRESS NOR IMPLIED, AND THE ABSENCE OF ANY LEGAL OR
ACTUAL DEFECTS, WHETHER DISCOVERABLE OR NOT. Specifically, and not to limit the foregoing, licensor
makes no representations or warranties (i) regarding the merchantability or fitness for a particular purpose of the Model
& Software, (ii) that the use of the Model & Software will not infringe any patents, copyrights or other intellectual

12.4. PARE 83

MMHuman3D, Release 0.11.0

property rights of a third party, and (iii) that the use of the Model & Software will not cause any damage of any kind
to you or a third party.

Limitation of Liability Because this Model & Software License Agreement qualifies as a donation, according to Section
521 of the German Civil Code (Bürgerliches Gesetzbuch – BGB) Licensor as a donor is liable for intent and gross
negligence only. If the Licensor fraudulently conceals a legal or material defect, they are obliged to compensate the
Licensee for the resulting damage.

Licensor shall be liable for loss of data only up to the amount of typical recovery costs which would have arisen had
proper and regular data backup measures been taken. For the avoidance of doubt Licensor shall be liable in accordance
with the German Product Liability Act in the event of product liability. The foregoing applies also to Licensor’s legal
representatives or assistants in performance. Any further liability shall be excluded. Patent claims generated through
the usage of the Model & Software cannot be directed towards the copyright holders. The Model & Software is provided
in the state of development the licensor defines. If modified or extended by Licensee, the Licensor makes no claims
about the fitness of the Model & Software and is not responsible for any problems such modifications cause.

No Maintenance Services You understand and agree that Licensor is under no obligation to provide either maintenance
services, update services, notices of latent defects, or corrections of defects with regard to the Model & Software.
Licensor nevertheless reserves the right to update, modify, or discontinue the Model & Software at any time.

Defects of the Model & Software must be notified in writing to the Licensor with a comprehensible description of the
error symptoms. The notification of the defect should enable the reproduction of the error. The Licensee is encouraged
to communicate any use, results, modification or publication.

Publications using the Model & Software You acknowledge that the Model & Software is a valuable scientific resource
and agree to appropriately reference the following paper in any publication making use of the Model & Software.

Citation:

@inproceedings{Kocabas_PARE_2021, title = {{PARE}: Part Attention Regressor for {3D} Human Body Estima-
tion}, author = {Kocabas, Muhammed and Huang, Chun-Hao P. and Hilliges, Otmar and Black, Michael J.}, booktitle
= {Proc. International Conference on Computer Vision (ICCV)}, pages = {11127–11137}, month = oct, year = {2021},
doi = {}, month_numeric = {10} }

Commercial licensing opportunities For commercial uses of the Model & Software, please send email to ps-
license@tue.mpg.de

This Agreement shall be governed by the laws of the Federal Republic of Germany except for the UN Sales Convention.

12.5 STAR

License

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights on this com-
puter program. You can only use this computer program if you have closed a license agreement with MPG or you get
the right to use the computer program from someone who is authorized to grant you that right. Any use of the computer
program without a valid license is prohibited and liable to prosecution.

Copyright©2019 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG). acting on behalf of its Max
Planck Institute for Intelligent Systems. All rights reserved.

Contact: ps-license@tuebingen.mpg.de

84 Chapter 12. Additional Licenses

CHAPTER

THIRTEEN

MMHUMAN3D.APIS

85

MMHuman3D, Release 0.11.0

86 Chapter 13. mmhuman3d.apis

CHAPTER

FOURTEEN

MMHUMAN3D.CORE

14.1 cameras

14.2 conventions

14.3 evaluation

14.4 filter

14.5 optimizer

14.6 parametric_model

14.7 visualization

87

MMHuman3D, Release 0.11.0

88 Chapter 14. mmhuman3d.core

CHAPTER

FIFTEEN

MMHUMAN3D.MODELS

15.1 models

15.2 architectures

15.3 backbones

15.4 discriminators

15.5 necks

15.6 heads

15.7 losses

15.8 utils

89

MMHuman3D, Release 0.11.0

90 Chapter 15. mmhuman3d.models

CHAPTER

SIXTEEN

MMHUMAN3D.DATA

16.1 data

16.2 datasets

16.3 data_converters

16.4 data_structures

91

MMHuman3D, Release 0.11.0

92 Chapter 16. mmhuman3d.data

CHAPTER

SEVENTEEN

MMHUMAN3D.UTILS

93

MMHuman3D, Release 0.11.0

94 Chapter 17. mmhuman3d.utils

CHAPTER

EIGHTEEN

INDICES AND TABLES

• genindex

• search

95

	Installation
	Requirements
	Prepare environment
	Install MMHuman3D
	A from-scratch setup script

	Getting Started
	Installation
	Data Preparation
	Body Model Preparation
	Inference / Demo
	Offline Demo
	Online Demo

	Evaluation
	Evaluate with a single GPU / multiple GPUs
	Evaluate with slurm

	Training
	Training with a single / multiple GPUs
	Training with Slurm

	More Tutorials

	Benchmark and Model Zoo
	Baselines
	HMR
	SPIN
	VIBE
	HybrIK
	PARE
	ExPose
	PyMAF-X

	HumanData
	Overview
	Key/Value definition
	Paths:
	Keypoints：
	Bounding Box：
	Human Pose and Shape Parameters：
	Other keys
	Suggestion for WHAT to include in HumanData['misc']:
	Suggestion for WHAT to include in HumanData['meta']:
	Some other info of HumanData
	Key check in HumanData.
	Value check in HumanData.

	Data compression
	Compression with mask
	Compression for file
	Compression by key

	Data selection
	Select by shape
	Select temporal slice

	To torch.Tensor

	MultiHumanData
	Data preparation
	Overview
	Datasets for supported algorithms
	Folder structure
	AGORA
	AMASS
	COCO
	COCO-WholeBody
	CrowdPose
	EFT
	GTA-Human
	Human3.6M
	Human3.6M Mosh
	HybrIK
	LSP
	LSPET
	MPI-INF-3DHP
	MPII
	PoseTrack18
	Penn Action
	PW3D
	SPIN
	SURREAL
	VIBE
	FreiHand
	EHF
	FFHQ
	ExPose
	Stirling

	Keypoints convention
	Overview
	How to use
	Converting between conventions
	Converting with confidence

	Supported Conventions
	HUMANDATA
	AGORA
	COCO
	COCO-WHOLEBODY
	CrowdPose
	Human3.6M
	GTA-Human
	HybrIK
	LSP
	MPI-INF-3DHP
	MPII
	PoseTrack18
	OpenPose
	PennAction
	SMPL
	SMPL-X
	Customizing keypoint convention

	Customize keypoints convention
	Overview

	Cameras
	Camera Initialization
	Camera Projection Matrixs
	Camera Conventions
	Some Conversion Functions
	Some Compute Functions

	Visualize Keypoints
	Visualize 2d keypoints
	Visualize 3d keypoints
	About ffmpeg_utils

	Visualize SMPL Mesh
	Different render_choice:
	Important parameters:

	Additional Licenses
	SMPLify-X
	VIBE
	SPIN
	PARE
	STAR

	mmhuman3d.apis
	mmhuman3d.core
	cameras
	conventions
	evaluation
	filter
	optimizer
	parametric_model
	visualization

	mmhuman3d.models
	models
	architectures
	backbones
	discriminators
	necks
	heads
	losses
	utils

	mmhuman3d.data
	data
	datasets
	data_converters
	data_structures

	mmhuman3d.utils
	Indices and tables

